
Aleš Zelený
Prague PostgreSQL Developers Day 2019

PostgreSQL Logical replication
Practical use case – Lessons Learned

2019-02-14 PostgreSQL Logical replication - lessons learned 2

Investment Analytics as a Service Platform

Who we are

2019-02-14 PostgreSQL Logical replication - lessons learned 3

Who’s me?

● InterBase / Firebird app developer, DBA (3 years)
● Oracle DBA (17 years)
● PostgreSQL DBA (8 years)
● Elephants enthusiast ...

2019-02-14 PostgreSQL Logical replication - lessons learned 4

Agenda

● Distributed solution description
● The boring part
● The adrenaline part (Lessons learned)
● Issues experienced and mitigation
● Conclusion

2019-02-14 PostgreSQL Logical replication - lessons learned 5

Distributed

2019-02-14 PostgreSQL Logical replication - lessons learned 6

...around globe

2019-02-14 PostgreSQL Logical replication - lessons learned 7

Asynchronous

~ 100 ms

2019-02-14 PostgreSQL Logical replication - lessons learned 8

Replicated also within data center

● Analytic core - publisher
– API servers - subscribers

● Asynchronous also within data center
– Batch ETLs or Logical replication

● Logical replication
– Global data managed at one place
– Workload distribution
– Pre–processed data are Geo-distributed

2019-02-14 PostgreSQL Logical replication - lessons learned 9

Table level replication

External
source
stage

Global
analytic

core

CAD ANL

USD ANL

EUR ANL
tds_fdwVendor

db

CAD - API

USD - API

EUR - API

2019-02-14 PostgreSQL Logical replication - lessons learned 10

Components

Publisher cluster (instance)
data are copied from here

Subscriber cluster
Replicated data destination

PublicationPublication
catalog object

customer
invoice

Replication Slot
one for each subscription

WAL files decoding
pgoutput

WAL sender
for each subscription

Knows what tables to manage

Subscription
catalog object

customer
invoice

change data transfer Logical replication worker
for each subscription

Logical
replication
launcher

Connect (get replicated tables, create replication slot)

Add tables to publication

Write data changes

start

2019-02-14 PostgreSQL Logical replication - lessons learned 11

Components

Publisher cluster (instance)
data are copied from here

PublicationPublication
pub_eshop

customer

Replication Slot
sub_stock

Publication
pub_stock

locationitemorder

Subscriber cluster
Replicated data destination

Knows what tables to manage

Subscription
sub_eshop

customer
item

Logical replication worker
for each subscription

Logical
replication
launcher

Write data changes

start

Subscriber cluster
Replicated data destination

Knows what tables to manage

Subscription
sub_stock

item
location

Logical replication worker
for each subscription

Logical
replication
launcher

Write data changes

start

Replication Slot
sub_eshop

change data transfer

change data transfer

2019-02-14 PostgreSQL Logical replication - lessons learned 12

Logical replication attributes

● Transactional (docs) for publications within a singe subscription
– Commit order is preserved, changes are send to subscribers as they arrive

(no batch mode)

– asynchronous / synchronous

● Target table might have additional colums
● Allow selective replication all / insert / update / delete
● Can fire triggers on subscriber – row level only (subscriber suns

with session_replication_role set to replica – triggers will
not fire by default)
– ALTER TABLE name ENABLE REPLICA TRIGGER trigger_name;

https://www.postgresql.org/docs/current/logical-replication.html
https://www.postgresql.org/docs/current/logical-replication-architecture.html

2019-02-14 PostgreSQL Logical replication - lessons learned 13

Logical replication limitations

● No conflict resolution (docs)
● fully qualified table name match is required
● Base tables only

– Take care of having identical partitions on publisher and subscriber

● No DDL replication (docs)
● No sequence replication
● TRUNCATE

– <= PostgreSQL 10 not replicated
– 11 and above supported

● NO Large Objects

https://www.postgresql.org/docs/current/logical-replication-conflicts.html
https://www.postgresql.org/docs/current/logical-replication-subscription.html
https://www.postgresql.org/docs/current/logical-replication.html
https://www.postgresql.org/docs/current/largeobjects.html

2019-02-14 PostgreSQL Logical replication - lessons learned 14

Yes, It worked (the boring part)

● GUC: wal_level = logical
● Create role for replication, tweak pg_hba.conf

– REPLICATION has to be granted to replication role

● Create a table(s) on source database
– With primary key – default replica identity

● serial (or identity) column as surrogate key if desirable

– Grant select on replicated tables to the role used for replication
● Necessary for initial data copy (copy_data = ture)

● Create publication object
– Add table(s) to publication

2019-02-14 PostgreSQL Logical replication - lessons learned 15

Yes, It worked

● Create “same” table on target database
– Instead of “BIG/SERIAL” consider use of BIG/INT column

● Unless you have reasons why to do so (table receives “local” inserts)

● Create subscription
– Wait a while for data to be copied (default behavior)
– Superuser privilege required to create subscription

● Enjoy...

2019-02-14 PostgreSQL Logical replication - lessons learned 16

Yes, It worked

● Create “same” table on target database
– Instead “BIG/SERIAL” use BIG/INT column

● Unless you have reasons why to do so (table receives “local” inserts)

● Create subscription
– Wait a while for data to be copied (default behavior)
– Superuser privilege required

● Enjoy...

● Configure replication state and lag monitoring

2019-02-14 PostgreSQL Logical replication - lessons learned 17

Replication lag monitoring

● SQL queries like for physical streaming replication
– Publisher database

● psql hint: \watch 30
SELECT pid, usename, application_name, state

, pg_current_wal_lsn() AS current_lsn
, sent_lsn
, pg_size_pretty(pg_wal_lsn_diff(pg_current_wal_lsn(), sent_lsn)) AS sent_diff
, write_lsn
, pg_size_pretty(pg_wal_lsn_diff(pg_current_wal_lsn(), write_lsn)) AS write_diff
, replay_lsn
, pg_size_pretty(pg_wal_lsn_diff(pg_current_wal_lsn(), replay_lsn)) AS replay_diff
, write_lag, flush_lag, replay_lag

FROM pg_stat_replication
ORDER BY application_name, pid;

https://www.postgresql.org/docs/current/logical-replication-monitoring.html

2019-02-14 PostgreSQL Logical replication - lessons learned 18

Lag monitoring is not enough

● An issue, like network outage might result in not running
wal sender process, therefore this needs to be monitored

● active_pid column of pg_replication_slots
has to be not null
– Can be joined to pg_stat_replication column pid

● Instance log files on publisher and subscriber side has to be
monitored as well

2019-02-14 PostgreSQL Logical replication - lessons learned 19

Instance parameters - planning

Publisher
● wal_level = logical
● max_worker_processes

– parallel workers, extension workers,
subscriptions (if any)...

● max_wal_senders
– Logical replication, streaming

standby, streaming backup
(pg_basebackup)

● max_replication_slots
– At least max_wal_senders

● wal_sender_timeout

– Network, workload peaks

Subscriber
● max_worker_processes

– Considerations like on publisher
● max_logical_replication_workers

– # subscriptions + initial sync
● max_sync_workers_per_subscription

– Initial sync parallel processes

● wal_receiver_timeout

– Network, workload peaks

Manual pages

https://www.postgresql.org/docs/current/logical-replication-config.html

2019-02-14 PostgreSQL Logical replication - lessons learned 20

When it does not work… adrenalin raise

● Logical replication as of our experience is reliable solution able
to handle large workload (trn/s or huge trns in terms of wal size)

● Despite some testing we had some issues resulting in stopped
replication process

● None of the issues was caused by a bug, know root causes
– reached known documented replication limitations
– improper configuration
– user code issue (because of know limitation)

https://github.com/postgres/postgres/blob/master/src/backend/replication/logical/reorderbuffer.c

2019-02-14 PostgreSQL Logical replication - lessons learned 21

Conflict resolution – known limitation

[23728] LOG: logical replication apply worker for subscription
"sub_test" has started

[23728] ERROR: duplicate key value violates unique constraint "foo_pkey"

[23728] DETAIL: Key (foo_id)=(1) already exists.

[11289] LOG: worker process: logical replication worker for subscription
16397 (PID 23728) exited with exit code 1

Subscriber instance log file

Resolution:
● Delete or update conflicting row(s) on subscriber
● Skip changes by using pg_replication_origin_advance()

● not recommended – data will be inconsistent and changes to other rows/tables might be lost

2019-02-14 PostgreSQL Logical replication - lessons learned 22

Conflict mitigation

● Do not trust your users not doing things you tell them they
should not do… configure privileges to avoid it

Publisher Subscriber

public.foo
replicated table

app_read
nologin role

app_write
nologin role

public.local_bar
non-replicated table

app_own
schema

 owner role

public.foo
replicated table

app_read
nologin role

app_write
nologin role

public.local_bar
non-replicated table

app_own
schema

 owner role

Logical replication

2019-02-14 PostgreSQL Logical replication - lessons learned 23

Conflict (again)

● Permissions are set, how it is possible?
– Schema upgrade (flyway, Sqitch) runs using app_own role and

a patch created new lookup tables with initial data pre-loaded…

● Mitigation
– Do a Code Review for every patch
– Choose good naming convention for tables
– Use dedicates schema for replicated tables

● Both can make code review easier to spot potential conflict

https://sqitch.org/

2019-02-14 PostgreSQL Logical replication - lessons learned 24

● Replicated table on publisher missing replica identity
– Default replica identity: Primary key

● Initial copy proceeded
– Subsequent changes coming later fails on publisher fails

● Replication still works, only the update statement on publisher DB fails

● Mitigation – carefully plan continues integration tests
– Apply DDL changes in CI pipeline
– Test processing including real data changes CI pipelines

Inappropriate objects configuration
postgres=# update foo set baz=-11 where bar=11;
ERROR: cannot update table "foo" because it does not have a replica identity and publishes updates
HINT: To enable updating the table, set REPLICA IDENTITY using ALTER TABLE.

https://www.postgresql.org/docs/current/sql-altertable.html#SQL-CREATETABLE-REPLICA-IDENTITY

2019-02-14 PostgreSQL Logical replication - lessons learned 25

● Replicated table has PK or other replica identity defined
● Initial copy / synchronization proceeded
● Subsequent changes on publisher proceed
● Subscriber fails to apply changes, replication is stopped

Missing replica identity on subscriber

ERROR: logical replication target relation "public.foo" has neither REPLICA IDENTITY index
nor PRIMARY KEY and published relation does not have REPLICA IDENTITY FULL

● Mitigation
– Continuous testing including real data changes as already mentioned

CC BY-SA 2.0

https://www.flickr.com/photos/mllerustad/53919426/in/set-1169139/

2019-02-14 PostgreSQL Logical replication - lessons learned 26

Don't Panic, see what might happen...

create table foo (foo_id serial PRIMARY KEY, product_id int not null,
serial_no text not null, constraint foo_key UNIQUE (product_id,
serial_no));

insert into foo(product_id, serial_no) select i, 'A'||i::text from
generate_series(1,5) gs(i);
alter publication pub_test add table foo;

create table foo (foo_id serial not null, product_id int not null, serial_no text not null, constraint foo_key
UNIQUE (product_id, serial_no));

postgres=# \d foo;
 Table "public.foo"
 Column | Type | Collation | Nullable | Default
------------+---------+-----------+----------+-------------------------------------
 foo_id | integer | | not null | nextval('foo_foo_id_seq'::regclass)
 product_id | integer | | not null |
 serial_no | text | | not null |
Indexes:
 "foo_key" UNIQUE CONSTRAINT, btree (product_id, serial_no)

table foo;
 foo_id | product_id | serial_no
--------+------------+-----------
 1 | 1 | A1
 2 | 2 | A2
 3 | 3 | A3
 4 | 4 | A4
 5 | 5 | A5
(5 rows)Publisher

Subscriber

Replica identity

https://en.wikipedia.org/wiki/Phrases_from_The_Hitchhiker%27s_Guide_to_the_Galaxy#Don't_Panic

2019-02-14 PostgreSQL Logical replication - lessons learned 27

Suddenly subscriber did not receiving changes...

update foo set serial_no = 'B5' where foo_id = 5;

alter subscription sub_test refresh publication with (COPY_DATA = true);
table foo;
 foo_id | product_id | serial_no
--------+------------+-----------
 1 | 1 | A1
 2 | 2 | A2
 3 | 3 | A3
 4 | 4 | A4
 5 | 5 | A5
(5 rows)

table foo;
 foo_id | product_id | serial_no
--------+------------+-----------
 1 | 1 | A1
 2 | 2 | A2
 3 | 3 | A3
 4 | 4 | A4
 5 | 5 | B5
(5 rows)

table foo;
 foo_id | product_id | serial_no
--------+------------+-----------
 1 | 1 | A1
 2 | 2 | A2
 3 | 3 | A3
 4 | 4 | A4
 5 | 5 | A5
(5 rows)

PK – default replica Identity
exists on publisher, so the update proceeded.

But the update was not applied on subscriber

Initial data copy was OK.

2019-02-14 PostgreSQL Logical replication - lessons learned 28

Panic action in place...
alter table foo replica identity using index foo_key;

LOG: logical replication apply worker for subscription "sub_test" has started
ERROR: logical replication target relation "public.foo" has neither REPLICA IDENTITY
index nor PRIMARY KEY and published relation does not have REPLICA IDENTITY FULL

postgres=# \d foo;
 Table "public.foo"
 Column | Type | Collation | Nullable | Default
------------+---------+-----------+----------+-------------------------------------
 foo_id | integer | | not null | nextval('foo_foo_id_seq'::regclass)
 product_id | integer | | not null |
 serial_no | text | | not null |
Indexes:
 "foo_pkey" PRIMARY KEY, btree (foo_id)
 "foo_key" UNIQUE CONSTRAINT, btree (product_id, serial_no) REPLICA IDENTITY
Publications:
 "pub_test" postgres=# \d foo;

 Table "public.foo"
 Column | Type | Collation | Nullable | Default
------------+---------+-----------+----------+-------------------------------------
 foo_id | integer | | not null | nextval('foo_foo_id_seq'::regclass)
 product_id | integer | | not null |
 serial_no | text | | not null |
Indexes:
 "foo_key" UNIQUE CONSTRAINT, btree (product_id, serial_no)

WAL already received changes using PK
as default Replica Identity,

therefore new replica identity using UQ constraint
defined on publisher applies
only to subsequent changes

and did not resolve current issue...

2019-02-14 PostgreSQL Logical replication - lessons learned 29

Add publisher replica identity on subscriber

alter table foo add constraint foo_pkey PRIMARY KEY (foo_id);

postgres=# table foo;
 foo_id | product_id | serial_no
--------+------------+-----------
 1 | 1 | A1
 2 | 2 | A2
 3 | 3 | A3
 4 | 4 | A4
 5 | 5 | B5
(5 rows)

Restoring replica identity which exists
 during changes written to WAL resolved the issue

Success!, Yes, but… not necessarily end of story.

2019-02-14 PostgreSQL Logical replication - lessons learned 30

The road to hell...

2019-02-14 PostgreSQL Logical replication - lessons learned 31

..is paved with good intentions

Unique constraint satisfy business natural primary key role, we can drop existing
primary key to save some disk space!

2019-02-14 PostgreSQL Logical replication - lessons learned 32

Resolved? Test it!

update foo set serial_no = 'B4' where foo_id = 4;

postgres=# \d foo;
 Table "public.foo"
 Column | Type | Collation | Nullable | Default
------------+---------+-----------+----------+-------------------------------------
 foo_id | integer | | not null | nextval('foo_foo_id_seq'::regclass)
 product_id | integer | | not null |
 serial_no | text | | not null |
Indexes:
 "foo_key" UNIQUE CONSTRAINT, btree (product_id, serial_no) REPLICA IDENTITY
Publications:
 "pub_test"

Replica identity is defined on publisher,
update proceed.

Actually to spot the issue, it is not necessary to drop the primary key constraint, troubles
were already “ordered” during initial panic actions…

table foo;
 foo_id | product_id | serial_no
--------+------------+-----------
 1 | 1 | A1
 2 | 2 | A2
 3 | 3 | A3
 5 | 5 | B5
 4 | 4 | B4
(5 rows)

2019-02-14 PostgreSQL Logical replication - lessons learned 33

Issue, again...

LOG: logical replication apply worker for subscription "sub_test" has started
ERROR: publisher did not send replica identity column expected by the logical
replication target relation "public.foo"
LOG: background worker "logical replication worker" (PID 6037) exited with exit code 1

postgres=# table foo;
 foo_id | product_id | serial_no
--------+------------+-----------
 1 | 1 | A1
 2 | 2 | A2
 3 | 3 | A3
 4 | 4 | A4
 5 | 5 | B5
(5 rows)

Well… no it does not work

postgres=# \d foo;
 Table "public.foo"
 Column | Type | Collation | Nullable | Default
------------+---------+-----------+----------+-------------------------------------
 foo_id | integer | | not null | nextval('foo_foo_id_seq'::regclass)
 product_id | integer | | not null |
 serial_no | text | | not null |
Indexes:
 "foo_pkey" PRIMARY KEY, btree (foo_id)
 "foo_key" UNIQUE CONSTRAINT, btree (product_id, serial_no)

Subscriber did not know about
replica identity change done on publisher,

So it expects PK as replica identity in decoded
 wal changes it received

2019-02-14 PostgreSQL Logical replication - lessons learned 34

We have read the manual by now...

alter subscription sub_test refresh publication with (copy_data = false);

postgres=# table foo;
 foo_id | product_id | serial_no
--------+------------+-----------
 1 | 1 | A1
 2 | 2 | A2
 3 | 3 | A3
 4 | 4 | A4
 5 | 5 | B5
(5 rows)

Subscriber knows about
replica identity change done on publisher,

but...

LOG: logical replication apply worker for subscription "sub_test" has started
ERROR: publisher did not send replica identity column expected by the logical replication target relation
"public.foo"
LOG: background worker "logical replication worker" (PID 6526) exited with exit code 1

2019-02-14 PostgreSQL Logical replication - lessons learned 35

Non default replica identity on both sides

alter table foo replica identity using index foo_key;

postgres=# table foo;
 foo_id | product_id | serial_no
--------+------------+-----------
 1 | 1 | A1
 2 | 2 | A2
 3 | 3 | A3
 5 | 5 | B5
 4 | 4 | B4
(5 rows)

Well, it works now!

Replica identity has to be same on publisher and subscriber, so when using not default
replica identity, it has to be defined identically on both sides.

2019-02-14 PostgreSQL Logical replication - lessons learned 36

Conclusion – expect human errors

● Publisher replica identity missing
– on publisher, PostgreSQL protects you – updates/deletes will fail

● add primary key on publisher
● add same PK on all subscribers, refresh subscription on all subscribers

● Subscriber side replica identity issues
– Keep calm, resist temptation to define new replica identity

(see previous point, there has to be one on publisher, otherwise it will reject changes)

– Identify replica identity on publisher (most probably PK) and create same
on all subscribers – adding missing PK, replication will resume

2019-02-14 PostgreSQL Logical replication - lessons learned 37

● There are auditing triggers examples available
● "Premature optimization is the root of all evil", Donald Knuth, Computing Surveys,

Vol 6, No 4, December 1974

Coding issue...

CREATE OR REPLACE FUNCTION audit.if_modified_func() RETURNS TRIGGER AS $body$
DECLARE
 v_old_data TEXT;
 v_new_data TEXT;
BEGIN
…
EXCEPTION
 WHEN data_exception THEN
 RAISE WARNING '[AUDIT.IF_MODIFIED_FUNC] - UDF ERROR [DATA EXCEPTION] - SQLSTATE: %, SQLERRM: %',SQLSTATE,SQLERRM;
 RETURN NULL;
 WHEN unique_violation THEN
 RAISE WARNING '[AUDIT.IF_MODIFIED_FUNC] - UDF ERROR [UNIQUE] - SQLSTATE: %, SQLERRM: %',SQLSTATE,SQLERRM;
 RETURN NULL;
 WHEN OTHERS THEN
 RAISE WARNING '[AUDIT.IF_MODIFIED_FUNC] - UDF ERROR [OTHER] - SQLSTATE: %, SQLERRM: %',SQLSTATE,SQLERRM;
 RETURN NULL;
END;
$body$
LANGUAGE plpgsql
SECURITY DEFINER
SET search_path = pg_catalog, audit;

https://wiki.postgresql.org/wiki/Audit_trigger
http://pplab.snu.ac.kr/courses/adv_pl05/papers/p261-knuth.pdf

2019-02-14 PostgreSQL Logical replication - lessons learned 38

● Should an audited action succeeded with warning if there was
an issue with creating audit record itself?
– Not a topic for this talk...

● We had several triggers inspired by the auditing trigger in code
base more than year, exceptions handling within trigger functions
provides application logic/context structured error messages / custom
exceptions, it worked well with no issues.

● More than 6 months replication works like a charm (yes, we already
learned about conflicts, replica identity… easy stuff)

Do not clone templates blindly...

2019-02-14 PostgreSQL Logical replication - lessons learned 39

● Signs of production disaster
– Server become terribly slow
– Monitoring warns us – swap is being used

● Curious, swap was not an issue before
● Postgres was using the memory
● Restart was not a solution, memory and swap was exhausted

within few minutes (16GB RAM, 30GB swap)
● Lost weekend

But the dormant disaster was in place...

2019-02-14 PostgreSQL Logical replication - lessons learned 40

● LSNs on the replication stats view were not advancing on subscriptions
● Timeouts occurs, while network was constantly check and not considered

as issue root cause

Some observations

open("pg_replslot/sub_usd/xid-6040508-lsn-429-57000000.snap", O_WRONLY|O_CREAT|O_APPEND, 0600) = 15
write(15, "\334\0\0\0\0\0\0\0H\3\234W)\4\0\0\0\0\0\0\0\0\0\0\177\6\0\0%@\0\0"..., 220) = 220
close(15) = 0

recvfrom(7, 0x55f56a3783c3, 5, 0, NULL, NULL) = -1 EAGAIN (Resource temporarily unavailable)
epoll_create1(EPOLL_CLOEXEC) = 10
epoll_ctl(10, EPOLL_CTL_ADD, 12, {EPOLLIN|EPOLLERR|EPOLLHUP, {u32=1781282352, u64=94512536630832}}) = 0
epoll_ctl(10, EPOLL_CTL_ADD, 9, {EPOLLIN|EPOLLERR|EPOLLHUP, {u32=1781282376, u64=94512536630856}}) = 0
epoll_ctl(10, EPOLL_CTL_ADD, 7, {EPOLLIN|EPOLLERR|EPOLLHUP, {u32=1781282400, u64=94512536630880}}) = 0
epoll_wait(10, [], 1, 1000) = 0

WAL senders were writing dome files Replication workers on subscriptions were waiting

2019-02-14 PostgreSQL Logical replication - lessons learned 41

● We have created clones of publisher and one subscriber instance
for analyses

● Disabled PostgreSQL service start on publisher, activated per
process memory monitoring

● wal sender processed were identified as the unusual memory
consumers

● Subscriptions were dropped (I takes several hours, we’ll see later
why), re-created with copy_data = false and gory weekend of
manual data synchronization (thanks to postgres_fdw, we were able
to do so, using application time stamp columns)

Operation restore, iteration one

2019-02-14 PostgreSQL Logical replication - lessons learned 42

Never more

2019-02-14 PostgreSQL Logical replication - lessons learned 43

● On cloned machines while extending swap to 50GB and updating configuration parameters
– wal_sender_timeout (from default 60 to 600 sec)

– wal_receiver_timeout (from default 60 to 600 sec)

● Timeout messages (see bellow) disappeared
– Several hours later, replication was streaming again (state catch-up => streaming)

Analyses

LOG: terminating walsender process due to replication timeout

ERROR: could not receive data from WAL stream: SSL connection has been closed unexpectedly
LOG: worker process: logical replication worker for subscription 37932 (PID 8657) exited with exit
code 1

Publisher instance

Subscriber instance

2019-02-14 PostgreSQL Logical replication - lessons learned 44

● Under some kind of workload, wal sender did not communicate
with wal receiver within default timeout of 60 seconds
– So it seems timeouts are there to cover network and some

other issues
● Logical replication can be weird and allocate lots of memory,

so extend SWAP and place it on NVMe, it is expensive,
but might help to survive form such issues
– Is the memory allocation a bug? => future investigation

needed, test-case needed

Root cause one (kind of)

2019-02-14 PostgreSQL Logical replication - lessons learned 45

Few months later...

2019-02-14 PostgreSQL Logical replication - lessons learned 46

● Replication was obviously broken, again, but we were prepared
– 300GB NVMe swap and 60GB of RAM

● System was slow, but much faster than with swap on HDD
– We were able to connect there

● Each of our 3 wal sender processes allocated 75GB of memory
(75 GB, Vss, 17GB Rss)

● No timeouts, only the replication lag growth over time 250GB...

Monitoring alert – growing replication lag

2019-02-14 PostgreSQL Logical replication - lessons learned 47

● Write to files like “pg_replslot/sub_usd/xid-6040508-lsn-429-57000000.snap”
● Read all of them afterwards (and sometimes send some data over

network to wal receivers)
● Delete all of them afterwards
● Each of the phases above lasts 3-4 hours
● pg_replslot/<slot_name> contain about 17 000 000 files, usually

small ones
● Ext4, nor ZFS can’t handle such amount of files within single

directory while keeping reasonable performance (find -type f | wc -l
takes 10+ minutes)

strace pattern for wal sender

2019-02-14 PostgreSQL Logical replication - lessons learned 48

● Finally, after long night on lunchtime next day, replication changes
its state to streaming

● VSS was not released, Rss shrinks to 3,5GB or RAM
● Bonus! We have learned new logical replication feature

– disable subscription
● Stop wal sender / receiver processes as expected

– Resume starts them (Vss memory was released, swap empty)
– All data changes during “disable time” were queued in replication

slot, therefore disable/enable does not mean lost changes (in the end, it
makes sense, but I haven’t found it in docs)

Replication resumes

2019-02-14 PostgreSQL Logical replication - lessons learned 49

● We have also collected much more data, perf records (all time was
spent on ext4 functions)...

● So we have tried to find similar issues on the web using better
keywords

● Nice presentation pgconfasia 2017, we were aware before,
recommended reading

● This amazing logical replicationinternals article pointed us right way –
reorderbuffer.c

● This post in pgsql-hackers makes us sure, what to look for –
subtransactions

It is not a bug, known limitation

https://www.slideshare.net/noriyoshishinoda/pgconfasia-2017-logical-replication-internals-english
https://blog.anayrat.info/en/2018/03/10/logical-replication-internals/
https://github.com/postgres/postgres/blob/master/src/backend/replication/logical/reorderbuffer.c
https://www.postgresql.org/message-id/688b0b7f-2f6c-d827-c27b-216a8e3ea700@2ndquadrant.com

2019-02-14 PostgreSQL Logical replication - lessons learned 50

● Because of the monitoring, we knew when the issue occurs
– Standard operation did not caused this issue yet

● We have checked processed data volumes – as usual

– Logging long statements is useful – we have found very simple delete
from table without predicates, lasting 20 minutes, issued by
a personal account

● Delete was used instead of truncate, to make sure that delete
trigger on that table can do it’s archiving job

● The table was not replicated (not in any publications)

subtransactions

2019-02-14 PostgreSQL Logical replication - lessons learned 51

● Other deletes similar amounts of rows were not issue in past
on similar tables, except, they did not have the archiving trigger

● Manual pages (again!): “Also, a block containing an
EXCEPTION clause effectively forms a subtransaction that can
be rolled back without affecting the outer transaction.”

● That is the true root cause – implicit subtransactions – used
just for more convenient error reporting
– By the way, there is also performance impact due to

subtransaction handling

subtransactions cont.

https://www.postgresql.org/docs/current/plpgsql-structure.html

2019-02-14 PostgreSQL Logical replication - lessons learned 52

● We were able to create reproducible test case
● As soon as we removed exception handling from row level

triggers, the test case proceeded without any issue
● We were testing transaction on 20E6 rows in single transaction, it

takes some time to parse this data, during that time some
replication lag raises, streaming state was not lost, works well

● We have also tried “large” transaction in terms of WAL size (delete
from table 6GB – long data in text columns) without any issue

● Currently we consider logical replication as stable well working

Conclusion

2019-02-14 PostgreSQL Logical replication - lessons learned 53

So Long, and Thanks for All the Fish

Questions

Thanks for your time

https://en.wikipedia.org/wiki/So_Long,_and_Thanks_for_All_the_Fish

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53

