Transaction isolation
evels and anomalies
IN PostgreSQL

Wi

P2D2 2022, Ales Zeleny

The "mandatory” boring slides
o SQL92 Isolation levels
o Isolation levels phenomena
The Lost update issue
Read Committed
Examples
Optional trip to other RDBMS

Agenda

PostgreSQL 14 adoption

e Who is already using PostgreSQL 14 ?

PostgreSQL 14 - BUG #1/485

BUG #17485: Records missing from Primary Key index when doing

REINDEX INDEX CONCURRENTLY
not only PK index, actually any index

PostgreSQL 13.7 - no issues

Check emall thread and wait for a fix if using concurrently option
Fix release probably in August 11th release, unless a maintenance
release out of regular schedule

https://www.postgresql.org/message-id/flat/17485-396609c6925b982d%40postgresql.org

Reading (spoilers)

PostgreSQL manuals
The Internals of PostgreSQl : Chapter 5 Concurrency Control

MVCC in PostgreSQL — 1. Isolation
PostgreSQL Concurrency Issues

https://www.postgresql.org/docs/current/transaction-iso.html
http://www.interdb.jp/pg/pgsql05.html
https://postgrespro.com/blog/pgsql/5967856
https://www.postgresql.org/files/developer/concurrency.pdf

Documentation

SQL standard SQL 1992, chapter 4.28 SQL-fransactions and subsequent versions.

Exhaustive information about Postgres implementation can be found in the
Postgres manuals.

ACID, ACID, ...

\f b

—r

http://www.contrib.andrew.cmu.edu/~shadow/sql/sql1992.txt
https://datacadamia.com/_media/data/type/relation/sql/sql1992.txt
https://www.postgresql.org/docs/current/transaction-iso.html
https://en.wikipedia.org/wiki/ACID
https://en.wikipedia.org/wiki/Lysergic_acid_diethylamide

tfransaction

Transaction -

e Atomic set of operations Data at valid
e no influence from other (correct) state
transactions - Isolation

Data at valid

(correct) state

Consistency

ANSI SQL

SQL-transaction has an isolation levels

e READ UNCOMMITTED
o READ COMMITTED

e REPEATABLE READ

e SERIALIZABLE

“The isolation level of a SQL-transaction is SERIALIZABLE by default. (by the SQL
standard, not default isolation level in most present databases available....)

A seridlizable execution is defined to be an execution of the operations of
concurrently executing SQL-tfransactions that produces the same effect as
some serial execution of those same SQL-fransactions.”

The four isolation levels guarantee that each SQL-transaction will be executed
completely or not at all, and that no updates will be lost.

— T
ANSI SQL

Concurrent SQL-transactions phenomena (anomalies):

e Dirty read (read uncommitted)
e Non-repeatable read
o Tl reads arow
o T2 modified or deletes the same row and commits
o TI re-reads the row and see modified ones (or realize that the row no longer
exists)
e Phantom read
o TI reads a set of rows satisfying some predicate
o T2 create row(s) that satisfying predicate used by T1 and commits
o TI repeats the same reads using the same predicate, it receives different set of
data
e Serialization anomaly
o The result of successfully committing a group of transactions is inconsistent with
all possible orderings of running those transactions one at a time.

ANSI SQLP2

Anomalies and transaction isolation levels:

Trn. Isolation level Dirty read Non-repeatable read | Phantom read

READ UNCOMMITTED v v v

READ COMMITTED

REPEATABLE READ

SERIALIZABLE

— T

anomalies

Anomalies happens when multiple transactions, all of them itself correct,
running together works incorrectly.

Reading uncommitted changes (dirty reads) is an example as tfransaction
producing the changes might be rolled back, but other transactions will use the
intermittent data state and can therefore produce incorrect results.

Serializable tfransaction isolation level is safe, but at the most probably not
acceptable impact on performance (throughput).

Transaction isolation levels in Postares

Isolation Level Dirty Read Nonrepeatable | Phantom Read | Serialization Anomaly
Read

Read uncommitted BWinPG® v v v

Read committed e v v v

Repeatable read - e M.nPG& v

Serializable - - e e

serialization anomaly: The result of successfully committing a group of
transactions is inconsistent with all possible orderings of running those
transactions one at a fime.

https://www.postgresql.org/docs/current/transaction-iso.html#MVCC-ISOLEVEL-TABLE

MVCC snapshots

PostgreSQL datfa consistency is maintained by using a mulfiversion model
(Multiversion Concurrency Control, MVCC).

This means that each SQL statement sees a snapshot of data (a database
version) as it was some time ago, regardless of the current state of the
underlying data.

... providing transaction isolation for each database session

A fuple is a row version with xmin and xmax fransaction identifiers (there are
more attributes).

https://www.postgresql.org/docs/current/mvcc-intro.html
https://www.postgresql.org/docs/current/storage-page-layout.html#STORAGE-TUPLE-LAYOUT

lost update

SQL standard prohibit lost update as mentioned before (SQL?2 - 4.28).
Postgres works that way - updating a row requires level lock.
It does not prevent application logic to lost an update.

lost update

SQL standard prohibit lost update as mentioned before (SQL?2 - 4.28).
Postgres works that way - updating a row requires level lock.
It does not prevent application logic to lost an update.

SELECT amount as v_amount
FROM stock item
WHERE stock item id = 1 \gset

UPDATE stock item
SET amount = :v_amount + 5 WHERE ..;

table stock item;
stock item id | item id | amount

N

lost update...

Do not expect 16 in amount column. That is an application stuff in our example.

Takeaway: do not store values to be updated in application variables...

ﬂO lost update on a locked row

UPDATE stock item

SET amount = amount + 5
WHERE ...;

I N

no lost update on a locked row

waiting...

re-read the data before

updating them =>
no data loss

No lost update...

Takeaway: do not store values to be updated in application variables... unless
you have to (complex application logic), then...

Use SELECT .. FOR UPDATE - it'll place a lock on the row to be updated, wait if
needed so it returns valid (latest) row content - and therefore data can differ
from a simple select in read committed isolation level.

An Update after waiting for a lock also re-check predicates if no longer
satisfied, row is not updated.

Read committed

e No dirty reads in PostgreSQL.
e Non-repeatable reads.
e Inconsistent reads (result of non-repeatable reads).

20

ead committed & Nonrepeatable Read

Obviously same as read uncommitted as stated in the manuals.

in autocommit (the default)

UPDATE stock item SET amount = 20
WHERE stock item id = 1;

,—w

Read committed - antipatterns

table stock item;
stock item id | item id | amount

DO LANGUAGE plpgsqgl S$code$
BEGIN
—-- do not allow negative amount for an item in stock
IF (SELECT amount FROM stock item, pg sleep(10) WHERE stock item id = 1) >= 10

THEN
UPDATE stock item SET amount = amount - 10 WHERE stock item id = 1;
END IF;
END;
Scodes$;
-—- walting for the pg sleep() UPDATE stock item SET amount = amount - 2

WHERE stock item id = 1;

table stock item;
stock item id | item id | amount stock item id | item id | amount

|

~ UPDATE stock item SET amount = amount - 2 WHERE stock item id = 1;

Failing row contains (1, 1,
SQL statement "UPDATE stock item SET amount = amount - 10 WHERE stock item id

Read Committed

Read Committed is the default isolation level in PostgreSQL.

When a transaction uses this isolation level, a SELECT query (without a FOR UPDATE/SHARE clause) sees only
data committed before the query began; it never sees either uncommitted data or changes committed during

query execution by concurrent transactions.

In effect, a SELECT query sees a snapshot of the database as of the instant the
query begins to run.

However, SELECT does see the effects of previous updates executed within its own transaction, even though they
are not yet committed. Also note that two successive SELECT commands can see different data, even though they
are within a single transaction, if other transactions commit changes after the first SELECT starts and before the

second SELECT starts.

24

https://www.postgresql.org/docs/current/transaction-iso.html#XACT-READ-COMMITTED

Examples

Concurrent transactions mixing
Read Committed and Repeatable read isolation level transactions in PostgreSQL.

e Read Write -Transactions usually in Read Committed
o waits for a lock, if needed
e Read Only - short transactions or some ETL processes might benefit from
Repeatable Read isolation level
o in case of read-write transactions be ready to handle “serialization error” at application
level (i.e. retry the failed operation)

25

default PostgreSQL

autocommit

° tril=# START TRANSACTION ISOLATION LEVEL REPEATABLE
. READ;
tril=# CREATE TABLE foo(id int, val int);
tril=*# SELECT * FROM foo;
id | val

tril=# INSERT INTO foo VALUES (1, 1);
tril=*# SELECT * FROM foo;

26

default PostgreSQL

autocommit

° tril=# START TRANSACTION ISOLATION LEVEL REPEATABLE
READ;

tril=# CREATE TABLE foo(id int, val int);

tril=*# SELECT * FROM foo;
id | val

tril=# INSERT INTO foo VALUES (1, 1);

id | val

tril=*# COMMIT;

tril=# SELECT * FROM foo;
id | val

27

default PostgreSQL

autocommit

° tril=# START TRANSACTION ISOLATION LEVEL REPEATABLE
READ;

tril=# CREATE TABLE foo(id int, val int);
tril=# INSERT INTO foo VALUES (1, 1);

tril=*# SELECT * FROM foo;
id | val
RN
1 | 1

tril=# CREATE TABLE bar(id int, val int);
tril=# INSERT INTO bar VALUES (1, 1);

tril=*# SELECT * from bar;

28

default PostgreSQL

autocommit

° tril=# START TRANSACTION ISOLATION LEVEL REPEATABLE
READ;

tril=# CREATE TABLE foo(id int, val int);
tril=# INSERT INTO foo VALUES (1, 1);

tril=*# SELECT * FROM foo;
id | val
RN
1 | 1

tril=# CREATE TABLE bar(id int, val int);
tril=# INSERT INTO bar VALUES (1, 1);

tril=*# SELECT * from bar;
id | val

29

PostgreSQL

tril=# START TRANSACTION;
tril=# CREATE TABLE foo(id int, val int);

¢ tril=# SELECT * FROM foo;

DDL is transactional ERROR: relation "foo" does not exist
LINE 1: SELECT * FROM foo;

e DDL is fransactional
O see the difference with MySQL example where DDL commits active transaction

e« Notonly PLPGSQL but also SQL functions has volatility category as
demonstrated in a 2020 p2d2.cz slides (function inlining).

30

https://p2d2.cz/files/query-optimization.pdf

— T

MVCC based snapshofts

e Read committed
SELECT query sees a snapshot of the database as of the instant the query

begins fo run.
o Subsequent queries obtains their own snapshot

e Repeatable read (and Serializable)
snapshot is taken at the first query after tfransaction start, not at the START

TRANSACTION statement itself.

e Thanks fo MVCC writers do not block reader and reader does not block
writers processes (row versioning - tuple [xmin, xmax])

31

Triggers...

CREATE OR REPLACE FUNCTION trg_slow() RETURNS CREATE OR REPLACE FUNCTION trg_rowcnt()
g?ﬁﬁggR LANGUAGE PLPGSQL AS RETURNS TRIGGER LANGUAGE PLPGSQL AS
DECLARE $func$
v_seconds INT; DECLARE
BEGIN v_cnt BIGINT;
BEGIN
IF TG_NARGS = 1 THEN
o oseconds:= TE_ARGVIR]: int; SELECT COUNT(*) INTO v_cnt FROM foo:
v_seconds:= 0;
END IF; RAISE NOTICE 'Table row count: %', v_cnt;
perform pg_sleep(v_seconds); IF (TG_OP = 'DELETE') THEN
IF (TG_OP = 'DELETE') THEN RETURN OLD;
RETURN OLD; ELSE
ELSE RETURN NEW;
RETURN NEW; END IF;
END IF;
END;
END; ;
Sfunc$; Sfunc$;

32

Triggers...

CREATE TRIGGER foo_trg_e5
BEFORE INSERT OR UPDATE OR DELETE
0]\ oYo}
FOR EACH ROW
EXECUTE FUNCTION trg_rowcnt();

CREATE TRIGGER foo_trg_10
BEFORE INSERT OR UPDATE OR DELETE
0]\ oYe}
FOR EACH ROW
EXECUTE FUNCTION trg_slow(5);

CREATE TRIGGER foo_trg_15
BEFORE INSERT OR UPDATE OR DELETE
ON foo
FOR EACH ROW
EXECUTE FUNCTION trg_rowcnt();

-- Test script:

DELETE
SELECT
INSERT
SELECT
DELETE
SELECT

FROM foo;

now();

INTO foo VALUES (1, 1);
now();

FROM foo;

now() ;

-- Concurrency test statement:

INSERT

INTO foo VALUES (1, 1);

33

Check Triggers...

DELETE
SELECT
INSERT
SELECT
DELETE
SELECT

2022-05-22 13:45:57.812879+02

psql:e.sql:76: NOTICE:
psql:e.sql:76: NOTICE:

FROM foo;

now() ;

INTO foo VALUES (1, 1);
now() ;

FROM foo;

now() ;

INSERT 6 1

2022-05-22 13:46:02.829487+02

Table row count: ©
Table row count: ©

psql:e.sql:78: NOTICE: Table row count: 1
psql:e.sql:78: NOTICE: ® Table row count: 2
DELETE 1

2022-05-22 13:46:07.842845+062
(1 row) O

=# INSERT INTO foo VALUES (1, 1);
NOTICE: Table row count: 1

NOTICE: Table row count: 1
INSERT 0 1

34

Read Committed - projection example

CREATE OR REPLACE FUNCTION f_cnt() RETURNS BIGINT
LANGUAGE SQL AS
Sfunc$
SELECT count(*) FROM foo, pg_sleep(5);
Sfunc$;

TRUNCATE TABLE foo: INSERT INTO foo VALUES (1, 1), (1, 1), (1, 1);

SELECT f_cnt() FROM foo; INSERT INTO foo VALUES (1, 1);

” \watch 5
o

35

Read Committed - projection example

CREATE OR REPLACE FUNCTION f_cnt() RETURNS BIGINT
LANGUAGE SQL AS
Sfunc$
SELECT count(*) FROM foo, pg_sleep(5);
Sfunc$;

TRUNCATE TABLE foo: INSERT INTO foo VALUES (1, 1), (1, 1), (1, 1);

SELECT f_cnt() FROM foo; INSERT INTO foo VALUES (1, 1);
f_cnt
““““ \watch 5
3
4
5
(3 rows)
Time: 15014,130 ms (00:15,014)

36

Read Committed - relations example

CREATE OR REPLACE FUNCTION f_cnt() RETURNS BIGINT
LANGUAGE SQL AS
Sfunc$
SELECT count(*) FROM foo, pg_sleep(5);
Sfunc$;

TRUNCATE TABLE foo: INSERT INTO foo VALUES (1, 1), (1, 1), (1, 1);

SELECT * FROM foo, f_cnt(); INSERT INTO foo VALUES (1, 1);

\watch 5

37

Read Committed - relations example

CREATE OR REPLACE FUNCTION f_cnt() RETURNS BIGINT
LANGUAGE SQL AS
Sfunc$
SELECT count(*) FROM foo, pg_sleep(5);
Sfunc$;

TRUNCATE TABLE foo: INSERT INTO foo VALUES (1, 1), (1, 1), (1, 1);

SELECT * FROM foo, f_cnt(); INSERT INTO foo VALUES (1, 1);
id | val | f_cnt
it At L \watch 5
11 1] 3
11 1] 3
11 1] 3
(3 rows)
Time: 5006,045 ms (00:05,006)

38

Read Committed - lateral example

CREATE OR REPLACE FUNCTION f_cnt() RETURNS BIGINT

LANGUAGE SQL AS
Sfunc$

SELECT count(*) FROM foo, pg_sleep(5);

Sfunc$;

TRUNCATE TABLE foo: INSERT INTO foo VALUES (1, 1), (1, 1), (1, 1);

SELECT * FROM foo
JOIN LATERAL f_cnt() ON TRUE;
id | val | f_cnt

____+ _____ + _______
171 1 | 3
171 1 | 3
171 1 | 3

(3 rows)

Time: 5006,045 ms (00:05,006)

INSERT INTO foo VALUES (1, 1);

\watch 5

39

Read Committed - lateral example 2

CREATE OR REPLACE FUNCTION f_cnt_param(int) RETURNS BIGINT

LANGUAGE SQL AS

Sfunc$

SELECT count(*) FROM foo, pg_sleep(5);
Sfunc$§;

TRUNCATE TABLE foo: INSERT INTO foo VALUES (1, 1), (1, 1), (1, 1);

SELECT * FROM foo
JOIN LATERAL f_cnt_param(foo.id) ON TRUE;
id | val | f_cnt_param

____+ _____ + _____________

1 3
171 1 | 4
1 5
(3 rows)
Time: 15011,754 ms (00:15,012)

INSERT INTO foo VALUES (1, 1);

\watch 5

40

Repeatable read

SET SESSION CHARACTERISTICS AS TRANSACTION ISOLATION LEVEL REPEATABLE READ;

(3 rows)
Time: 15011,280 ms (00:15,011)

id | val | f_cnt
____+ _____ + _______
11 1| 3
11 1| 3
11 1| 3

(3 rows)

(3 rows)
Time: 5001,980 ms (00:05,002)

(3 rows)
Time: 15012,739 ms (00:15,013)

41

Read committed

No dirty reads in PostgreSQL.

Non-repeatable reads.

Inconsistent reads (result of non-repeatable reads).

Volatile functions (the default) are executed for each row and see
changes committed by other tx.

Triggers leverages on frigger functions and they are volatile (despite the
syntax options available). For more details see mailing list thread.

42

https://www.postgresql.org/message-id/4761.1329515190@sss.pgh.pa.us

Repeatable read as arescue...

tril=# INSERT INTO FOO VALUES (1, 1); tril=# START TRANSACTION ISOLATION LEVEL
INSERT 0 1 REPEATABLE READ;
tril=*# table foo;
id | val
____+ _____
1 | 1
tril=# DELETE FROM foo;
DELETE 1
tril=*# table foo;
id | val
____+ _____
1 | 1

tril=*# UPDATE foo SET val=val+1;
ERROR: could not serialize access due to
concurrent delete

43

ﬂl-?epeq’rcble read coding impact

No lost changes as described in Read committed. Nirvana...

On the other hand You can't have vour cake and eaft it so it comes with some
price:

ERROR: could not serialize access due to concurrent update

Your application have to be ready to handle these exceptions.

If you are using postgres_fdw, your remote transactions are at REPEATABLE READ
isolation level (unless local transaction is SERIALIZABLE), therefore don't be
surprised by a serialization error even if local transaction is READ COMMITTED.

44

https://en.wikipedia.org/wiki/Nirvana
https://en.wikipedia.org/wiki/You_can%27t_have_your_cake_and_eat_it
https://www.postgresql.org/docs/current/postgres-fdw.html#id-1.11.7.42.12

Serializable

No anomalies are allowed.

Throughput is affected due to necessary locks used as an addition to snapshot
isolation.

e serialization error might occur

e |ock waits to prevent Read-only tfransaction anomaly
o lock on fransactionid

45

tril=# CREATE TABLE foo (cust_id int, val int);
tril=# CREATE TABLE bar (cust_id int, val int);
tril=# INSERT INTO foo values (1, 12);
tril=# INSERT INTO bar values (1, 12);

tril=# START TRANSACTION ISOLATION LEVEL
SERTALIZABLE;

tril=*# TABLE foo;

cust_id | val

_________ +_____
1] 12

tril=*# UPDATE foo SET val = 8 WHERE cust_id = 1;
tril=*# SELECT foo.val + bar.val FROM foo JOIN bar
USING (cust_id);

?column?

tril=+*# COMMIT;
COMMIT

Serializable

tril=# START TRANSACTION ISOLATION LEVEL
SERTALIZABLE;

tril=*# table bar;
cust_id | val
_________ o

11 12

tril=*# UPDATE bar SET val = 8 WHERE cust_id = 1;
tril=*# SELECT foo.val + bar.val FROM foo JOIN bar
USING (cust_id);

?column?

tril=*# COMMIT;

46

tril=# CREATE TABLE foo (cust_id int, val int);
tril=# CREATE TABLE bar (cust_id int, val int);
tril=# INSERT INTO foo values (1, 12);
tril=# INSERT INTO bar values (1, 12);

tril=# START TRANSACTION ISOLATION LEVEL
SERTALIZABLE;

tril=*# TABLE foo;

cust_id | val

_________ +_____
1] 12

tril=*# UPDATE foo SET val = 8 WHERE cust_id = 1;
tril=*# SELECT foo.val + bar.val FROM foo JOIN bar
USING (cust_id);

?column?

tril=+*# COMMIT;
COMMIT

Serializable

tril=# START TRANSACTION ISOLATION LEVEL
SERTALIZABLE;

tril=*# table bar;

cust_id | val

_________ o
11 12

tril=*# UPDATE bar SET val = 8 WHERE cust_id = 1;
tril=*# SELECT foo.val + bar.val FROM foo JOIN bar
USING (cust_id);

?column?

tril=*# COMMIT;

ERROR: could not serialize access due to
read/write dependencies among transactions

DETAIL: Reason code: Canceled on identification as
a pivot, during commit attempt.

HINT: The transaction might succeed if retried.

47

Thank you for your attention

8o : :
camnai o st /AN e
N 1‘ % 2 “v i . q

48

https://unsplash.com/@anniespratt?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText
https://unsplash.com/s/photos/trip?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText

mysql> CREATE TABLE foo(if INT, val INT);

mysql> INSERT INTO foo VALUES (1, 1);

mysql> DROP TABLE FOO;

mysql> SELECT * FROM foo;

e e +
| id | val |
e e +
1 1|
e e +

mysql> SELECT * FROM foo;
ERROR 1146 (42S02): Table 'mysql.foo’
doesn't exist

50

MySQL

mysql> START TRANSACTION;
mysql> START TRANSACTION;
mysql> CREATE TABLE foo (id int, val int);

mysql> SELECT * FROM foo;

51

MySQL

mysql> START TRANSACTION;
mysql> START TRANSACTION;

mysql> CREATE TABLE foo (id int, val int);

w mysql> SELECT * FROM foo;

Empty set (0.00 sec)

mysql> INSERT INTO foo VALUES (1, 1);

' W mysql> SELECT * FROM foo;

52

MySQL

mysql> START TRANSACTION;

mysql> START TRANSACTION;

mysql> CREATE TABLE foo (id int, val int);

m mysql> SELECT * FROM foo;

Empty set (0.00 sec)

mysql> INSERT INTO foo VALUES (1, 1);

mysql> SELECT * FROM foo;
Empty set (0.00 sec)

53

MySQL

MySQL implements Read Uncommitted isolation level
(on InnoDB storage engine)

mysql> \h start transaction

Name: 'START TRANSACTION'

Description:

Syntax:

START TRANSACTION
[transaction_characteristic [,

transaction_characteristic] ...]

transaction_characteristic: {
WITH CONSISTENT SNAPSHOT

| READ WRITE

| READ ONLY

}

The WITH CONSISTENT SNAPSHOT modifier does not change the
current transaction isolation level

The only isolation level that permits a consistent read
is
REPEATABLE READ.

mysql> SELECT @@transaction_ISOLATION;

T +
| @@transaction_ISOLATION |
T +
| REPEATABLE-READ |
T +

mysql> commit;

mysql> SELECT * FROM foo;

" P " P +
| id | val |
" P " P +
I 1 | 1 |
" P " P +

54

MySQL repeatable read

mysql> CREATE TABLE foo (id int, val int);
mysql> INSERT INTO foo VALUES (1, 1);

mysql> DELETE FROM foo;
Query OK, 1 row affected (0.02 sec)

mysql> START TRANSACTION;

mysql> SELECT * FROM foo;

- - +
| id | val |
- - +
| 1| 1|
- - +

- - +
| id | val |
- - +
| 1| 1|
- - +

55

e MySQL repeatable read

mysql> CREATE TABLE bar(id int, va int);
Query OK, @ rows affected (0.03 sec)

mysql> INSERT INTO bar VALUES (1, 1);
Query OK, 1 row affected (0.01 sec)
mysql> SELECT * FROM bar;

ERROR 1412 (HY@B®): Table definition has
changed, please retry transaction

mysql> SELECT * FROM foo;

mysql> SELECT * FROM bar;
+-—— - +-—— - +
| id | va |
+-—— - +-—— - +
1 1]
+-—— - +-—— - +

56

CREATE TABLE foo(if INT, val INT);
INSERT INTO foo VALUES (1, 1);

SQL> DROP TABLE FO0O;

Statement failed, SQLSTATE = 42000
unsuccessful metadata update
-object TABLE "FOO" is in use

SQL> DROP TABLE FO0O;

Statement failed, SQLSTATE = 42000
unsuccessful metadata update
-object TABLE "FOO0" is in use

SQL> COMMIT,;
SQL> DROP TABLE FOO;

SQL> SELECT * FROM foo;.

SQL> COMMIT;

autocommit is

not the default

57

Firebird (Interbase)

SQL> SET TRANSACTION;

SQL> CREATE TABLE foo (id int, val int);
SQL> SET TRANSACTION;
SQL> SELECT * FROM foo;
SQL> INSERT INTO foo VALUES (1, 1);

SQL> SELECT * FROM foo;

58

Firebird (Interbase)

SQL> SET TRANSACTION; SQL> SET TRANSACTION;
SQL> CREATE TABLE foo (id int, val int);
SQL> SELECT * FROM foo;

SQL> INSERT INTO foo VALUES (1, 1);
SQL> SELECT * FROM foo;

SQL> COMMIT,;

SQL> SELECT * FROM foo; ¢
Defaults: . ®

SET TRANSACTION SQL> COMMIT:
READ WRITE SQL> SELECT * FROM foo;
WAIT
ISOLATION LEVEL SNAPSHOT; ID VAL

The three isolatfion levels supported in Firebird are: 1 1
e SNAPSHOT
e SNAPSHOT TABLE STABILITY
e READ COMMITTED with two specifications (NO
RECORD_VERSION and RECORD_VERSION) manudal pages 59

https://www.firebirdsql.org/file/documentation/html/en/refdocs/fblangref40/firebird-40-language-reference.html#fblangref40-transacs

Photo by Nick Fewings on Unsplash

https://unsplash.com/@jannerboy62?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText
https://unsplash.com/s/photos/welcome-back?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText

PostgreSQL:
MySQL:
Firebird:
Sybase:

MS SQL Server:

Oracle:
DB2:
Informix:

Default transaction isolation levels

read committed

repeatable read

Snapshot

Level 1 — prevents dirty reads.

read committed

read committed
Cursor stability (CS)
read committed

61

https://www.postgresql.org/docs/14/transaction-iso.html#XACT-READ-COMMITTED
https://dev.mysql.com/doc/refman/8.0/en/set-transaction.html
https://www.firebirdsql.org/file/documentation/html/en/refdocs/fblangref40/firebird-40-language-reference.html#fblangref40-transacs
https://infocenter.sybase.com/help/index.jsp?topic=/com.sybase.infocenter.dc32300.1600/doc/html/san1390612541854.html
https://docs.microsoft.com/en-us/sql/t-sql/statements/set-transaction-isolation-level-transact-sql?view=sql-server-ver15
https://docs.oracle.com/cd/E25054_01/server.1111/e25789/consist.htm
https://www.ibm.com/docs/en/db2/11.5?topic=issues-isolation-levels
https://informix.hcldoc.com/14.10/help/topic/com.ibm.sqls.doc/ids_sqs_0030.htm

