

New ways to migrate from Oracle

Laurenz Albe
laurenz.albe@cybertec.at

Cybertec

Prague PostgreSQL Developers’ Day 2018

mailto:laurenz.albe@cybertec.at

The problem

Database migration consists of several parts:
● Migration of object definitions

(CREATE TABLE, constraints, indexes …)

● Migration of the table data
● Migration of code stored in the database

(functions, triggers, packages, …)
● Adapt the application (drivers, SQL dialect)

DDL migration

● Need to extract metadata to construct DDL
– CREATE TABLE is defined in the SQL standard

– but not nested tables, partitioning …

● Need to adapt data types
– Translate NUMBER to integer, double precision or numeric?

– Translate DATE to date or timestamp?
(Oracle DATE has seconds precision)

– Translate BLOB to bytea or large objects?

Data migration

Extracting data from Oracle is difficult:
● sqlplus can be scripted, but is (almost) unusable
● SQL Developer is possible, but not comfortable.

Cannot export BLOBs

● Oracle foreign data wrapper works well

It seems like Oracle makes this hard by design

“Stored” code migration

● Functions, procedures, packages, triggers
● Code has to be translated by hand

– PL/SQL is similar to PL/pgSQL, but only very simple functions
need no editing

● Packages can often be translated to functions in a schema
● PL/SQL code that interacts with the OS a lot (manipulate

files, send e-mail) is often better translated to PL/Perl or
PL/Python

● PL/Java is an option for Java stored procedures

Adapt the application

● Should be simple: both Oracle and PostgreSQL use
SQL, and there is an SQL standard, but
– nobody supports the complete standard
– everybody extends the standard

● Need to adapt to changed data types
● Application code needs manual intervention and a lot of

testing
● Module “orafce” provides (some) compatibility
● Abstraction layers (ORM) help a lot

SQL differences: Joins

● Oracle uses a special syntax for outer joins:
SELECT b.col1, a.col2
FROM base_table b, attributes a
WHERE b.id=a.b_id(+);

● Has to be translated to standard join syntax:
SELECT b.col1, a.col2
FROM base_table b
 LEFT JOIN attributes a ON b.id=a.b_id;

SQL differences: empty strings

● Oracle treats empty strings as NULL values
● This leads to different semantics in string

concatenation:
('astring' || NULL) IS NOT NULL

● A workaround in PostgreSQL is to use the
function coalesce:
coalesce(col1, '') || coalesce(col2, '')

SQL differences: Aliases

● Oracle supports the following syntax:
SELECT *
 FROM (SELECT …);

● PostgreSQL (and the standard) require an alias:
SELECT *
 FROM (SELECT …) alias;

SQL differences: sequences

● SQL standard syntax: NEXT VALUE FOR asequence
● Oracle syntax: asequence.NEXTVAL
● PostgreSQL syntax: nextval('asequence')
● Oracle does not allow NEXTVAL in a DEFAULT clause

→simplification in PostgreSQL possible

● This difference might become less important with
the new identity column syntax supported by both

Techniques for Oracle migration

● There are some commercial tools
● There is ora2pg (https://ora2pg.darold.net/)

– Free open source
– Time tested (has been around for a while)
– Rich in features (PL/SQL migration, migration cost

assessment reports)
– Works fairly well

https://ora2pg.darold.net/

Shortcomings of ora2pg

● Many features lead to many bugs
● Produces a “monolithic” SQL script that usually

has to be edited by hand.
● Does not cope well with “moving targets”

(schema changes while migration is developed)

Design goals for a new tool

● Do not attempt to cover everything
(PL/SQL code, user defined types, …)
Rather, keep it simple

● Comfortable editing of individual object
definitions

● Ability to cope with “moving targets”
(to some extent)

Idea: use Oracle FDW

● The Oracle foreign data wrapper is good for data
migration (can be used with ora2pg):
– Translates between data types
– Translates encoding
– Direct data transfer without intermediate storage

● If oracle_fdw is good for data, why not also for metadata?
● This way, everything can be done with PL/pgSQL inside

PostgreSQL
● Easy to write, no portability issues!

What is a foreign data wrapper?

● Allows to define “foreign tables” which look and
feel like they are normal tables.

● SQL statements are “redirected” to an external
data source.

● Conforms to the SQL standard.
● Exist (in varying quality) for a lot of external

data sources.

ora_migrator architecture

● Two “helper” schemas: Oracle and PG stage
● Oracle stage contains foreign tables for Oracle

metadata (table columns, constraints, etc.)
● PG stage contains tables with a snapshot of the data

from the Oracle stage plus “translated” values (lower
case names, PostgreSQL data types)

● PG stage can be edited (data types, PL/SQL code)
● PG stage can be “refreshed” from Oracle stage

(should work well for “normal” schema changes)

ora_migrator requirements

● Install oracle_fdw extension
● Create a foreign server and a user mapping with

a user that can access Oracle catalog
(e.g. SELECT ANY DICTIONARY privilege)

● Test oracle_fdw configuration with
SELECT oracle_diag('servername');

● Install ora_migrator extension with
CREATE EXTENSION

Migration steps (1)

● oracle_migrate_prepare: creates stages

● Edit tables in the PG stage

● oracle_migrate_mkforeign: creates target
schemas and foreign tables for the data

● oracle_migrate_tables: creates local tables and
migrates the data (errors turned to warnings)

● for parallelization, migrate each table by calling
oracle_materialize('schema', 'table')

Migration steps (2)

● oracle_migrate_functions: creates functions

● oracle_migrate_triggers: creates triggers

● oracle_migrate_views: creates views

● oracle_migrate_constraints: creates constraints and
indexes

● oracle_migrate_finish: drops staging schemas

● DROP EXTENSION oracle_fdw CASCADE;
to remove all traces of the migration process

“One click” migration

● For simple databases that need no manual
editing, you can migrate with one call:
SELECT oracle_migrate(
 server => 'oraserver',
 only_schemas => '{ORASCHEMA}');

● This won’t migrate functions and will only work
in very simple cases.

Data migration problems (1)

● Zero bytes in Oracle strings
invalid byte sequence for encoding "UTF8": 0x00

● Best solution: fix in Oracle
● Workaround:
ALTER FOREIGN TABLE s.tab OPTIONS (
 DROP schema, SET table '(SELECT id,
 replace(str, chr(0), '''') AS str, …
 FROM s.tab)');

Data migration problems (2)

● Illegal bytes in Oracle:
invalid byte sequence for encoding "UTF8": 0x80

● Can happen because Oracle does not check
data if client encoding = server encoding

● Possible solution (if “real” encoding is known)
– Create PostgreSQL DB with “real” encoding

– Set nls_lang option on foreign data wrapper to
Oracle server encoding (no translation)

Making it comfortable

● Editing tables with UPDATE statements isn’t nice

● Cybertec is currently developing a GUI that
handles ora_migrator for you:
– Calls the appropriate SQL functions for setup and

migration
– Comfortable editor to modify metadata

How can I get ora_migrator?

● ora_migrator is open source and available on
https://github.com/cybertec‑postgresql/ora_migrator

● Try it and share your issues and ideas

https://github.com/cybertec%E2%80%91postgresql/ora_migrator

Thank you for your attention!

Any Questions?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25

