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The problem

Database migration consists of several parts:
● Migration of object definitions

(CREATE TABLE, constraints, indexes …)

● Migration of the table data
● Migration of code stored in the database

(functions, triggers, packages, …)
● Adapt the application (drivers, SQL dialect)



  

DDL migration

● Need to extract metadata to construct DDL
– CREATE TABLE is defined in the SQL standard

– but not nested tables, partitioning …

● Need to adapt data types
– Translate NUMBER to integer, double precision or numeric?

– Translate DATE to date or timestamp?
(Oracle DATE has seconds precision)

– Translate BLOB to bytea or large objects?



  

Data migration

Extracting data from Oracle is difficult:
● sqlplus can be scripted, but is (almost) unusable
● SQL Developer is possible, but not comfortable.

Cannot export BLOBs

● Oracle foreign data wrapper works well

It seems like Oracle makes this hard by design



  

“Stored” code migration

● Functions, procedures, packages, triggers
● Code has to be translated by hand

– PL/SQL is similar to PL/pgSQL, but only very simple functions 
need no editing

● Packages can often be translated to functions in a schema
● PL/SQL code that interacts with the OS a lot (manipulate 

files, send e-mail) is often better translated to PL/Perl or 
PL/Python

● PL/Java is an option for Java stored procedures



  

Adapt the application

● Should be simple: both Oracle and PostgreSQL use 
SQL, and there is an SQL standard, but
– nobody supports the complete standard
– everybody extends the standard

● Need to adapt to changed data types
● Application code needs manual intervention and a lot of 

testing
● Module “orafce” provides (some) compatibility
● Abstraction layers (ORM) help a lot



  

SQL differences: Joins

● Oracle uses a special syntax for outer joins:
SELECT b.col1, a.col2
FROM base_table b, attributes a
WHERE b.id=a.b_id(+);

● Has to be translated to standard join syntax:
SELECT b.col1, a.col2
FROM base_table b
   LEFT JOIN attributes a ON b.id=a.b_id;



  

SQL differences: empty strings

● Oracle treats empty strings as NULL values
● This leads to different semantics in string 

concatenation:
('astring' || NULL) IS NOT NULL

● A workaround in PostgreSQL is to use the 
function coalesce:
coalesce(col1, '') || coalesce(col2, '') 



  

SQL differences: Aliases

● Oracle supports the following syntax:
SELECT *
   FROM (SELECT …);

● PostgreSQL (and the standard) require an alias:
SELECT *
   FROM (SELECT …) alias;



  

SQL differences: sequences

● SQL standard syntax: NEXT VALUE FOR asequence
● Oracle syntax: asequence.NEXTVAL
● PostgreSQL syntax: nextval('asequence')
● Oracle does not allow NEXTVAL in a DEFAULT clause

→simplification in PostgreSQL possible

● This difference might become less important with 
the new identity column syntax supported by both



  

Techniques for Oracle migration

● There are some commercial tools
● There is ora2pg (https://ora2pg.darold.net/)

– Free open source
– Time tested (has been around for a while)
– Rich in features (PL/SQL migration, migration cost 

assessment reports)
– Works fairly well

https://ora2pg.darold.net/


  

Shortcomings of ora2pg

● Many features lead to many bugs
● Produces a “monolithic” SQL script that usually 

has to be edited by hand.
● Does not cope well with “moving targets” 

(schema changes while migration is developed)



  

Design goals for a new tool

● Do not attempt to cover everything
(PL/SQL code, user defined types, …)
Rather, keep it simple

● Comfortable editing of individual object 
definitions

● Ability to cope with “moving targets”
(to some extent)



  

Idea: use Oracle FDW

● The Oracle foreign data wrapper is good for data 
migration (can be used with ora2pg):
– Translates between data types
– Translates encoding
– Direct data transfer without intermediate storage

● If oracle_fdw is good for data, why not also for metadata?
● This way, everything can be done with PL/pgSQL inside 

PostgreSQL
● Easy to write, no portability issues!



  

What is a foreign data wrapper?

● Allows to define “foreign tables” which look and 
feel like they are normal tables.

● SQL statements are “redirected” to an external 
data source.

● Conforms to the SQL standard.
● Exist (in varying quality) for a lot of external 

data sources.



  

ora_migrator architecture

● Two “helper” schemas: Oracle and PG stage
● Oracle stage contains foreign tables for Oracle 

metadata (table columns, constraints, etc.)
● PG stage contains tables with a snapshot of the data 

from the Oracle stage plus “translated” values (lower 
case names, PostgreSQL data types)

● PG stage can be edited (data types, PL/SQL code)
● PG stage can be “refreshed” from Oracle stage 

(should work well for “normal” schema changes)



  

ora_migrator requirements

● Install oracle_fdw extension
● Create a foreign server and a user mapping with 

a user that can access Oracle catalog
(e.g. SELECT ANY DICTIONARY privilege)

● Test oracle_fdw configuration with
SELECT oracle_diag('servername');

● Install ora_migrator extension with 
CREATE EXTENSION



  

Migration steps (1)

● oracle_migrate_prepare: creates stages

● Edit tables in the PG stage

● oracle_migrate_mkforeign: creates target 
schemas and foreign tables for the data

● oracle_migrate_tables: creates local tables and 
migrates the data (errors turned to warnings)

● for parallelization, migrate each table by calling 
oracle_materialize('schema', 'table') 



  

Migration steps (2)

● oracle_migrate_functions: creates functions

● oracle_migrate_triggers: creates triggers

● oracle_migrate_views: creates views

● oracle_migrate_constraints: creates constraints and 
indexes

● oracle_migrate_finish: drops staging schemas

● DROP EXTENSION oracle_fdw CASCADE;
to remove all traces of the migration process



  

“One click” migration

● For simple databases that need no manual 
editing, you can migrate with one call:
SELECT oracle_migrate(
   server       => 'oraserver',
   only_schemas => '{ORASCHEMA}');

● This won’t migrate functions and will only work 
in very simple cases.



  

Data migration problems (1)

● Zero bytes in Oracle strings
invalid byte sequence for encoding "UTF8": 0x00

● Best solution: fix in Oracle
● Workaround: 
ALTER FOREIGN TABLE s.tab OPTIONS (
   DROP schema, SET table '(SELECT id,
     replace(str, chr(0), '''') AS str, …
     FROM s.tab)'); 



  

Data migration problems (2)

● Illegal bytes in Oracle:
invalid byte sequence for encoding "UTF8": 0x80

● Can happen because Oracle does not check 
data if client encoding = server encoding

● Possible solution (if “real” encoding is known)
– Create PostgreSQL DB with “real” encoding

– Set nls_lang option on foreign data wrapper to 
Oracle server encoding (no translation)



  

Making it comfortable

● Editing tables with UPDATE statements isn’t nice

● Cybertec is currently developing a GUI that 
handles ora_migrator for you:
– Calls the appropriate SQL functions for setup and 

migration
– Comfortable editor to modify metadata



  

How can I get ora_migrator?

● ora_migrator is open source and available on
https://github.com/cybertec‑postgresql/ora_migrator

● Try it and share your issues and ideas

https://github.com/cybertec%E2%80%91postgresql/ora_migrator


  

Thank you for your attention!

Any Questions?
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