THINGS YOUR EXPLAIN PLAN IS NOT
TELLING YOU

ANTS AASMA
P2D2 2025

SSSSSSSSSSSSSSSSSSSSSSSSSS

Hello

([J
[J
Things your explain plan is not telling you Ants Aasma P2D2 2025 2/60 {]

About me

* Ants Aasma
¢ Lead Database Consultant
¢ 13 years of helping people make PostgreSQL run fast

([J
[J
Things your explain plan is not telling you Ants Aasma P2D2 2025 3/60 {]

Everybody loves explain

([J
[J
Things your explain plan is not telling you Ants Aasma P2D2 2025 4/60 {]

Explain yourself

e EXPLAIN tells us how the database planned to execute our query
® EXPLAIN ANALYZE collects statistics how well that went

([J
[J
Things your explain plan is not telling you Ants Aasma P2D2 2025 5/60 {]

Explain yourself

e EXPLAIN tells us how the database planned to execute our query
® EXPLAIN ANALYZE collects statistics how well that went

¢ If you are really curious, then:

EXPLAIN (ANALYZE, VERBOSE, SETTINGS, BUFFERS, WAL, SUMMARY, MEMORY, SERIALIZE

([J
[J
Things your explain plan is not telling you Ants Aasma P2D2 2025 5/60 {]

Explain yourself

e EXPLAIN tells us how the database planned to execute our query
® EXPLAIN ANALYZE collects statistics how well that went

¢ If you are really curious, then:

EXPLAIN (ANALYZE, VERBOSE, SETTINGS, BUFFERS, WAL, SUMMARY, MEMORY, SERIALIZE
m Maybe it's time for EXPLAIN EVERYTHING?

([J
[J
Things your explain plan is not telling you Ants Aasma P2D2 2025 5/60 {]

What are we going to talk about

e Explain is great!
e Everybody should be using it.

([J
[J
Things your explain plan is not telling you Ants Aasma P2D2 2025 6/60 {]

What are we going to talk about

e Explain is great!
e Everybody should be using it.

e This talk is about the parts that are not (yet) great.

([J
[J
Things your explain plan is not telling you Ants Aasma P2D2 2025 6/60 {]

Warning

e This talk will have code.

([J
[J
Things your explain plan is not telling you Ants Aasma P2D2 2025 7/60 {]

Warning

e This talk will have code.

e A lot of code.

([J
[J
Things your explain plan is not telling you Ants Aasma P2D2 2025 7/60 {]

Warning

e This talk will have code.
e A lot of code.

e Like really a lot of it.
SELECT

Slides will be available on the conference website.

Or get it now from 2024.pgconf.de

Things your explain plan is not telling you Ants Aasma

P2D2 2025

[]
([]
7/60 @

Crash course on reading EXPLAIN

([J
[J
Things your explain plan is not telling you Ants Aasma P2D2 2025 8/60 {]

Parts of an explain plan

e Represents the tree of a volcano execution model.
e Each node pulls from those below it.
e Rows come from the inside out

EXPLAIN SELECT * FROM tasks JOIN jobs USING (job_id) WHERE 99.9 LIMIT 100;

([J
[J
Things your explain plan is not telling you Ants Aasma P2D2 2025 9/60 {]

Parts of an explain plan

e Represents the tree of a volcano execution model.
e Each node pulls from those below it.
e Rows come from the inside out

EXPLAIN SELECT * FROM tasks JOIN jobs USING (job_id) WHERE 99.9 LIMIT 100;

Limit (cost=0.42..149.83 rows=100 width=44)
-> Nested Loop (cost=0.42..716.10 rows=479 width=44)
-> Seq Scan on jobs (cost=0.00..188.00 rows=8 width=16)
Filter: (value > 99.9)
-> Index Scan using tasks_job_id_id_done_idx on tasks
(cost=0.42..65.41 rows=60 width=32)
Index Cond: (job_id = jobs.job_id)

([J
[J
Things your explain plan is not telling you Ants Aasma P2D2 2025 9/60 {]

Running it

EXPLAIN ANALYZE
SELECT * FROM tasks JOIN jobs USING (job_id) WHERE 99.9 LIMIT 100;

([J
[J
Things your explain plan is not telling you Ants Aasma P2D2 2025 10/60 {]

Running it

EXPLAIN ANALYZE
SELECT * FROM tasks JOIN jobs USING (job_id) WHERE 99.9 LIMIT 100;

Limit (cost=0.42..149.83 rows=100 width=44) (actual time=0.153..0.279 rows=100 loops=1.
-> Nested Loop (cost=0.42..716.10 rows=479 width=44) (actual time=0.152..0.272 rows=]1
-> Seq Scan on jobs (cost=0.00..188.00 rows=8 width=16) (actual time=0.144..0.167
Filter: (value > 99.9)
Rows Removed by Filter: 1180
-> Index Scan using tasks_job_id_id_done_idx on tasks (cost=0.42..65.41 rows=60 w
Index Cond: (job_id = jobs.job_id)
Planning Time: 0.188 ms
Execution Time: 0.299 ms

([J
[J
Things your explain plan is not telling you Ants Aasma P2D2 2025 10/60 {]

Running it

EXPLAIN (ANALYZE, COSTS OFF)
SELECT * FROM tasks JOIN jobs USING (job_id) WHERE 99.9 LIMIT 100;

Limit (actual time=0.153..0.279 rows=100 loops=1)
-> Nested Loop (actual time=0.152..0.272 rows=100 loops=1)
-> Seq Scan on jobs (actual time=0.144..0.167 rows=2 loops=1)
Filter: (value > 99.9)
Rows Removed by Filter: 1180
-> Index Scan using tasks_job_id_id_done_idx on tasks
(actual time=0.006..0.045 rows=50 loops=2)
Index Cond: (job_id = jobs.job_id)
Planning Time: ©.188 ms
Execution Time: 0.299 ms

Things your explain plan is not telling you Ants Aasma P2D2 2025

[]
([]
1/60 @

Buffers

EXPLAIN (ANALYZE, BUFFERS, COSTS OFF) SELECT (*) FROM tasks;

Aggregate (actual time=56.689..56.690 rows=1 loops=1)
Buffers: shared hit=2519 read=2153
I/0 Timings: shared read=2.774
-> Seq Scan on tasks (actual time=0.008..35.051 rows=599524 loops=1)
Buffers: shared hit=2519 read=2153
I/0 Timings: shared read=2.774
Planning Time: ©.059 ms
Execution Time: 56.711 ms

([J
[J
Things your explain plan is not telling you Ants Aasma P2D2 2025 12/60 {]

Buffers

EXPLAIN (ANALYZE, BUFFERS, COSTS OFF) SELECT (*) FROM tasks;

Aggregate (actual time=56.689..56.690 rows=1 loops=1)
Buffers: shared hit=2519 read=2153
I/0 Timings: shared read=2.774
-> Seq Scan on tasks (actual time=0.008..35.051 rows=599524 loops=1)
Buffers: shared hit=2519 read=2153
I/0 Timings: shared read=2.774
Planning Time: ©.059 ms
Execution Time: 56.711 ms

® read means from OS, can't tell if it came from disk or not.
m |I/0 Timings help, always set track_io_timing = on

Things your explain plan is not telling you Ants Aasma P2D2 2025

[]
([]
12/60 @

Chapter 1: Why am | smelling TOAST

([J
[J
Things your explain plan is not telling you Ants Aasma P2D2 2025 13/60 {]

We need a schema
CREATE TABLE reports (

report_id primary key,

ruleset_id not null,

data jsonb not null -- {"metricl1”: ©0.42, ..., "metricl1000": 0.123}
)5
CREATE TABLE rules (

rule_id primary key,

ruleset_id not null,

rule_nr not null,

metric_field text not null,

max_value not null -- reports.data->metric_field <= max_value
'

CREATE INDEX ON reports (ruleset_id);
CREATE INDEX ON rules (ruleset_id);

[]
[J
Things your explain plan is not telling you Ants Aasma P2D2 2025 14/60 @

And some data
-- 10000 reports with 1000 metrics each

INSERT INTO reports
SELECT id,
(random()*100)+1 ruleset_id,
(SELECT jsonb_object_agg('metric' metric::text, random())
FROM generate_series(1,1000) metric)
FROM generate_series(1, 10000) id;
-- 100 rulesets with 10 rules each
INSERT INTO rules

SELECT () over (),
ruleset_id,
rule_nr,
‘metric’ (random()*1000 + 1)::text metric_field,

0.95 + 0.1*random() max_value

FROM generate_series(1, 100) ruleset_id, generate_series(1,10) rule_nr;

Things your explain plan is not telling you Ants Aasma P2D2 2025

[J
([]
15/60 @

The data

SELECT pg_size_pretty(((data::text))) avg_size,
pg_size_pretty(((data::text))) total_data_size,

pg_size_pretty(pg_total_relation_size('reports')) total_table_size
FROM reports;

avg_size | total_data_size | total_table_size

__________ +_________________+__________________
32 kB | 316 MB | 159 MB

([J
[J
Things your explain plan is not telling you Ants Aasma P2D2 2025 16/60 {]

Lets read the data

EXPLAIN (ANALYZE, COSTS OFF)
SELECT FROM reports;

1 Seq Scan on reports (actual time=0.008..0.591 rows=10000 loops=1)

2 Planning Time: 0.053 ms
3 Execution Time: 0.868 ms

([J
[J
Things your explain plan is not telling you Ants Aasma P2D2 2025 17/60 {]

Lets read the data

EXPLAIN (ANALYZE, COSTS OFF)
SELECT FROM reports;

1 Seq Scan on reports (actual time=0.008..0.591 rows=10000 loops=1)

2 Planning Time: 0.053 ms
3 Execution Time: 0.868 ms

® 316MB in 0.9ms —>339 GB/s . . .

m That's suspiciously fast...
m Lets double check

Things your explain plan is not telling you Ants Aasma P2D2 2025

[]
([]
17/60 @

Actually read the data

\timing on

\copy (SELECT * FROM reports) TO '/dev/null'
COPY 10000

Time: 1687.562 ms (00:01.688)

A w DN =

([J
[J
Things your explain plan is not telling you Ants Aasma P2D2 2025 18/60 {]

What's going on

Large values are split up into chunks and stored in a secondary table (toasting)
Main table contains only the identifier
Value is transparently read in as needed. (detoasting)
EXPLAIN ANALYZE doesn't need it.
m The data is not serialized so detoasting is not triggered.

([J
[J
Things your explain plan is not telling you Ants Aasma P2D2 2025 19/60 {]

Fixed in PostgreSQL 17

EXPLAIN (ANALYZE, COSTS OFF, SERIALIZE TEXT)
SELECT FROM reports;

Seq Scan on reports (actual time=0.009..0.728 rows=10000 loops=1)
Planning Time: 0.040 ms

Serialization: time=1169.736 ms output=323787kB format=text
Execution Time: 1171.082 ms

A w N =

([J
[J
Things your explain plan is not telling you Ants Aasma P2D2 2025 20/60 {]

Detoasting can be anywhere

SELECT report_id, rule_id
FROM reports JOIN rules USING (ruleset_id)
WHERE (data->metric_field)::real > max_value AND rule_nr = 1;

([J
[J
Things your explain plan is not telling you Ants Aasma P2D2 2025 AVI) {]

Detoasting can be anywhere

SELECT report_id, rule_id
FROM reports JOIN rules USING (ruleset_id)
WHERE (data->metric_field)::real > max_value AND rule_nr = T;

1 Merge Join (actual time=82.500.. 299.761 rows=108 loops=1)

2 Merge Cond: (rules.ruleset_id = reports.ruleset_id)

3 Join Filter: (((reports.data -> rules.metric_field))::real > rules.max_value)

4 Rows Removed by Join Filter: 9892

5 Buffers: shared hit=28351 read=17915 written=1

6 -> Index Scan using rules_ruleset_id_idx on rules (actual time=0.030..0.326 rows=100 loops=
7 Filter: (rule_nr = 1)

8 Rows Removed by Filter: 900

9 Buffers: shared hit=748 read=3

10 -> Index Scan using reports_ruleset_id_idx on reports (actual time=0.010.. 3.275 rows=10000
11 Buffers: shared hit=5515

12 Execution Time: 299.787 ms

([J
[J
Things your explain plan is not telling you Ants Aasma P2D2 2025 AVI) {]

Detoasting can be anywhere

SELECT report_id, rule_id
FROM reports JOIN rules USING (ruleset_id)
WHERE (data->metric_field)::real > max_value AND rule_nr = 1;

1 Merge Join (actual time=82.500..299.761 rows=108 loops=1)

2 Merge Cond: (rules.ruleset_id = reports.ruleset_id)

3 Join Filter: (((reports.data -> rules.metric_field))::real > rules.max_value)

4 Rows Removed by Join Filter: 9892

5 Buffers: shared hit=28351 read=17915 written=1

6 -> Index Scan using rules_ruleset_id_idx on rules (actual time=0.030.. 0.326 rows=100 loops=
7 Filter: (rule_nr = 1)

8 Rows Removed by Filter: 900

9 Buffers: shared hit=748 read=3

10 -> Index Scan using reports_ruleset_id_idx on reports (actual time=0.010.. 3.275 rows=10000
11 Buffers: shared hit=5515

12 Execution Time: 299.787 ms

([J
[J
Things your explain plan is not telling you Ants Aasma P2D2 2025 22/60 {]

Detoasting is not cached

SELECT report_id, rule_id
FROM reports JOIN rules USING (ruleset_id)
WHERE (data->metric_field)::real > max_value

Things your explain plan is not telling you Ants Aasma P2D2 2025

[]
([]
23/60 @

Detoasting is not cached

SELECT report_id, rule_id
FROM reports JOIN rules USING (ruleset_id)
WHERE (data->metric_field)::real > max_value

Merge Join (actual time=45.499..2579.457 rows=1593 loops=1)
Merge Cond: (rules.ruleset_id = reports.ruleset_id)
Join Filter: (((reports.data -> rules.metric_field))::real > rules.max_value)
Rows Removed by Join Filter: 98407
Buffers: shared hit=436246 read=20105
-> Index Scan using rules_ruleset_id_idx on rules (actual time=0.042..0.411 rows=1000 loops=
Buffers: shared hit=740 read=11
-> Index Scan using reports_ruleset_id_idx on reports (actual time=0.012..22.575 rows=99991
Buffers: shared hit=55590 read=10
Execution Time: 2579.533 ms

S W o NO Ul A WwWN =

—_

([J
[J
Things your explain plan is not telling you Ants Aasma P2D2 2025 23/60 {]

How to spot detoasting

* Look for unreasonably high buffer accesses.
® Look for large columns used in predicates and function calls (VERBOSE helps)

([J
[J
Things your explain plan is not telling you Ants Aasma P2D2 2025 24/60 {]

Example of early detoasting

EXPLAIN (BUFFERS, VERBOSE, ANALYZE, COSTS OFF)
SELECT (data::text) FROM reports ORDER BY random() LIMIT 100;

1 Limit (actual time=1291.706..1291.725 rows=100 loops=1)

2 Output: ((data)::text), (random())

3 Buffers: shared hit=20342 read=19732

4 -> Sort (actual time=1291.704..1291.717 rows=100 loops=1)
5 Qutput: ((data)::text), (random())

6 Sort Key: (random())

7 Sort Method: top-N heapsort Memory: 3945kB

8 -> Seq Scan on public.reports (actual time=0.210..1279.087 rows= 10000 loops=1)
9 Output: (data)::text, random()

0 Buffers: shared hit=20342 read=19732

1 Execution Time: 1291.764 ms

([J
[J
Things your explain plan is not telling you Ants Aasma P2D2 2025 25/60 {]

How to fix detoasting

Case 1: value is detoasted too early.

e Use subqueries with OFFSET/LIMIT as a boundary to limit evaluation push down.

([J
[J
Things your explain plan is not telling you Ants Aasma P2D2 2025 26/60 {]

Subquery boundary

SELECT (data::text) FROM (SELECT data FROM reports ORDER BY random() LIMIT 100);

([J
[J
Things your explain plan is not telling you Ants Aasma P2D2 2025 27/60 {]

Subquery boundary

SELECT (data::text) FROM (SELECT data FROM reports ORDER BY random() LIMIT 100);

1 Subquery Scan on unnamed_subquery (actual time=2.232..14.562 rows=100 loops=1)
2 Output: (unnamed_subquery.data)::text

3 Buffers: shared hit=442 read=32

4 -> Limit (actual time=2.076..2.089 rows=100 loops=1)

5 Output: reports.data, (random())

6 -> Sort (actual time=2.076..2.081 rows=100 loops=1)

7 Output: reports.data, (random())

8 Sort Key: (random())

9 Sort Method: top-N heapsort Memory: 37kB

10 -> Seq Scan on public.reports (actual time=0.008..0.990 rows=10000 loops=1)
11 Output: reports.data, random()

12 Buffers: shared hit=74

13 Execution Time: 14.582 ms

([J
[J
Things your explain plan is not telling you Ants Aasma P2D2 2025 27/60 {]

How to fix detoasting 2

Case 2: value is detoasted multiple times

® Force early detoasting by a dummy operation.

([J
[J
Things your explain plan is not telling you Ants Aasma P2D2 2025 28/60 {]

Add dummy operation

SELECT report_id, rule_id
FROM reports
JOIN rules USING (ruleset_id)
WHERE (data->metric_field)::real > max_value

to
SELECT report_id, rule_id
FROM (SELECT report_id, ruleset_id, data '{}"' data FROM reports OFFSET 0)

JOIN rules USING (ruleset_id)
WHERE (data->metric_field)::real > max_value;

([J
[J
Things your explain plan is not telling you Ants Aasma P2D2 2025 29/60 {]

Dummy operation explain

1 Hash Join (actual time=0.749..333.923 rows=1248 loops=1)

2 Hash Cond: (reports.ruleset_id = rules.ruleset_id)

3 Join Filter: (((((reports.data || '{}'::jsonb)) -> rules.metric_field))::real > rules.max_va
4 Rows Removed by Join Filter: 98752

5 Buffers: shared hit=30216 read=9866

6 -> Seq Scan on reports (actual time=0.045..273.442 rows=10000 loops=1)

7 Buffers: shared hit=30214 read=9860

8 -> Hash (actual time=0.213..0.214 rows=1000 loops=1)

9 Buckets: 1024 Batches: 1 Memory Usage: 63kB

10 Buffers: shared hit=2 read=6

11 -> Seq Scan on rules (actual time=0.004..0.099 rows=1000 loops=1)
12 Buffers: shared hit=2 read=6

13 Execution Time: 334.006 ms

([J
[J
Things your explain plan is not telling you Ants Aasma P2D2 2025 30/60 {]

Handling TOAST in queries

Be concious of whether large values are involved in a query plan.
The planner is completely oblivious about detoasting.

Think if you need to be eager or lazy.

Use tricks to force the planners hand.

]
[
Ants Aasma P2D2 2025 31/60 @

Things your explain plan is not telling you

Chapter 2: | (don't) see dead tuples

([J
[J
Things your explain plan is not telling you Ants Aasma P2D2 2025 32/60 {]

Schema time

¢ We are building a task queue
CREATE TYPE task_status AS ENUM ('Todo', 'Done', 'Failed');

CREATE TABLE tasks (
id bigserial primary key,
job_id not null default random(1, 10),
status task_status not null,
added timestamptz not null default now(),
done timestamptz

IE

CREATE INDEX ON tasks (added) WHERE status 'Todo';

Things your explain plan is not telling you Ants Aasma P2D2 2025

[]
([]
33/60 @

Add some tasks

INSERT INTO tasks (status)
SELECT FROM generate_series(1,100) 1i;

([J
[J
Things your explain plan is not telling you Ants Aasma P2D2 2025 34/60 {]

The workload

queue-insert.sql
INSERT INTO tasks (status) VALUES ('Todo');

queue-complete.sqgl

UPDATE tasks SET status ‘Done', done = NOW()
WHERE id = (SELECT id FROM tasks
WHERE status ‘Todo' ORDER BY added
FOR UPDATE SKIP LOCKED LIMIT 1);

([J
[J
Things your explain plan is not telling you Ants Aasma P2D2 2025 35/60 {]

Running the workload

queue-insert.sql queue-complete.sql
2000
10 600

([J
[J
Things your explain plan is not telling you Ants Aasma P2D2 2025 36/60 {]

Running the workload

queue-insert.
2000
10 600

progress: 10.0 s, 1996.6 tps,
progress: 20.0 s, 1991.9 tps,
progress: 30.0 s, 1969.4 tps,
progress: 40.0 s, 2006.0 tps,
progress: 50.0 s, 2008.1 tps,

Things your explain plan is not telling you

sql queue-complete.sql

lat 4.251
lat 3.897
lat 6.368
lat 4.353
lat 4.225

Ants Aasma

ms
ms
ms

ms

stddev
stddev
stddev
stddev
stddev

2.994, 0 failed, lag 1.945 ms
2.686, 0 failed, lag 1.673 ms
13.453, 0 failed, lag 4.003 ms
3.135, @ failed, lag 2.026 ms
2.830, 0 failed, lag 1.905 ms

P2D2 2025

[]
([]
36/60 @

Meanwhile in another part of town

A business analyst using DBeaver:

BEGIN ISOLATION LEVEL REPEATABLE READ;
SELECT (*) FROM tasks WHERE status ;

Things your explain plan is not telling you Ants Aasma P2D2 2025

[]
[]
37/60 @

Meanwhile in another part of town

A business analyst using DBeaver:

BEGIN ISOLATION LEVEL REPEATABLE READ;
SELECT (*) FROM tasks WHERE status

“Let’s go get a coffee to think about that number...”

Things your explain plan is not telling you Ants Aasma

[]
([]
P2D2 2025 37/60 @

Back at benchmark central

progress: 90.0 s, 1985.0 tps, lat 17.509 ms stddev 17.266, @ failed, lag 14.128 ms

progress: 100.0 s, 1654.7 tps, lat 1188.524 ms stddev 343.977, @ failed, lag 1183.696 ms
progress: 110.0 s, 1552.0 tps, lat 2753.375 ms stddev 686.912, @ failed, lag 2748.222 ms
progress: 120.0 s, 1353.5 tps, lat 5476.902 ms stddev 987.954, @ failed, lag 5470.992 ms
progress: 130.0 s, 1280.2 tps, lat 8885.448 ms stddev 1064.684, @ failed, lag 8879.201 ms
progress: 140.0 s, 1177.2 tps, lat 12687.523 ms stddev 1277.164, @ failed, lag 12680.729 ms
progress: 150.0 s, 1103.0 tps, lat 17038.791 ms stddev 1365.447, @ failed, lag 17031.536 ms
progress: 160.0 s, 1047.2 tps, lat 21655.815 ms stddev 1455.754, @ failed, lag 21648.179 ms
progress: 170.0 s, 985.5 tps, lat 26621.604 ms stddev 1573.951, @ failed, lag 26613.488 ms
progress: 180.0 s, 923.9 tps, lat 31668.206 ms stddev 1587.211, @ failed, lag 31659.547 ms
progress: 190.0 s, 918.5 tps, lat 37157.963 ms stddev 1645.525, @ failed, lag 37149.256 ms
progress: 200.0 s, 877.3 tps, lat 42607.753 ms stddev 1721.361, @ failed, lag 42598.632 ms
progress: 210.0 s, 853.5 tps, lat 48289.559 ms stddev 1720.792, @ failed, lag 48280.190 ms
progress: 220.0 s, 788.5 tps, lat 54187.022 ms stddev 1852.551, @ failed, lag 54176.878 ms
progress: 230.0 s, 751.6 tps, lat 60477.265 ms stddev 1899.692, @ failed, lag 60466.617 ms

([J
[J
Things your explain plan is not telling you Ants Aasma P2D2 2025 38/60 {]

Incident resolution

e “Our CPUs are on fire, what is going on?”
* “pg_stat_statements says that the queue completion query is 100x slower.”
* “l know, let’s get an explain plan!”

([J
[J
Things your explain plan is not telling you Ants Aasma P2D2 2025 39/60 {]

The explain plan

1 Update on tasks (actual time=25.273..25.274 rows=0 loops=1)

2 Buffers: shared hit=95467 dirtied=1 written=1

3 I/0 Timings: shared write=0.028

4 InitPlan 1 (returns $1)

5 -> Limit (actual time=25.204..25.205 rows=1 loops=1)

6 Buffers: shared hit=95454

7 -> LockRows (actual time=25.204..25.204 rows=1 loops=1)

8 Buffers: shared hit=95454

9 -> Index Scan using tasks_added_idx on tasks tasks_1 (actual time
=25.143.. 25.148 rows=10 loops=1)

10 Filter: (status = 'Todo'::task_status)

11 Buffers: shared hit=95428

12 -> Index Scan using tasks_pkey on tasks (actual time=25.214..25.215 rows=1 loops=1)
13 Index Cond: (id = $1)

14 Buffers: shared hit=95458

15 Execution Time: 25.292 ms

([J
[J
Things your explain plan is not telling you Ants Aasma P2D2 2025 40/60 {]

What's going on

* The open transaction is preventing autovacuum from cleaning up completed
jobs.
¢ Index fills up with old row versions that have actually already been updated.

e Due to the open transaction we can't cache the dead status in the index.
m See “Killed Index Tuples” blogpost by Laurenz

e Every time we look for a task, we have to scan over the index entries for already
completed tasks.

m For each one go and look at the row in the table to see that it has been updated.

([J
[J
Things your explain plan is not telling you Ants Aasma P2D2 2025 41/60 {]

https://www.cybertec-postgresql.com/en/killed-index-tuples/

What's going on

* The open transaction is preventing autovacuum from cleaning up completed
jobs.
¢ Index fills up with old row versions that have actually already been updated.

e Due to the open transaction we can't cache the dead status in the index.
m See “Killed Index Tuples” blogpost by Laurenz

e Every time we look for a task, we have to scan over the index entries for already
completed tasks.
m For each one go and look at the row in the table to see that it has been updated.

* None of this is visible in the explain numbers.

([J
[J
Things your explain plan is not telling you Ants Aasma P2D2 2025 41/60 {]

https://www.cybertec-postgresql.com/en/killed-index-tuples/

Fixing it

¢ Avoid mixing long queries/transactions and update heavy workloads.

e Use statement_timeout, idle_in_transaction_session_timeout to have a
backstop against accidents.

* PostgreSQL 17 also has transaction_timeout.

([J
[J
Things your explain plan is not telling you Ants Aasma P2D2 2025 42/60 {]

After terminating the naughty connection

1 Update on tasks (actual time=0.308..0.308 rows=0 loops=1)

2 Buffers: shared hit=516

3 InitPlan 1 (returns $1)

4 -> Limit (actual time=0.290..0.291 rows=1 loops=1)

5 Buffers: shared hit=506

6 -> LockRows (actual time=0.290..0.290 rows=1 loops=1)

7 Buffers: shared hit=506

8 -> Index Scan using tasks_added_idx on tasks tasks_1 (actual time
=0.284..0.285 rows=2 loops=1)

9 Filter: (status = 'Todo'::task_status)

10 Buffers: shared hit=504

11 -> Index Scan using tasks_pkey on tasks (actual time=0.294..0.295 rows=1 loops=1)
12 Index Cond: (id = $1)

13 Buffers: shared hit=510

14 Execution Time: 0.328 ms

([J
[J
Things your explain plan is not telling you Ants Aasma P2D2 2025 43/60 {]

The missing information

e How many rows were scanned but found not visible
* How many killed index tuples were skipped over
e This also affects sequential scans, it's just not as easy to see

([J
[J
Things your explain plan is not telling you Ants Aasma P2D2 2025 44/60 {]

The invisible visibility map

We need a larger table for this:

CREATE TABLE bigger AS SELECT i, repeat(' ', 100)
FROM generate_series(1,2) j, generate_series(1,3000000) 1i;

CREATE INDEX ON bigger(i);

VACUUM ANALYZE bigger;

([J
[J
Things your explain plan is not telling you Ants Aasma P2D2 2025 45/60 {]

Holy buffer hit count Batman

EXPLAIN (BUFFERS, ANALYZE, COSTS OFF) SELECT i FROM bigger;

([J
[J
Things your explain plan is not telling you Ants Aasma P2D2 2025 46/60 {]

Holy buffer hit count Batman

EXPLAIN (BUFFERS, ANALYZE, COSTS OFF) SELECT i FROM bigger;

1 Index Only Scan using bigger_i_idx on bigger (actual time=0.016..799.596 rows=6000000
loops=1)
Heap Fetches: @
Buffers: shared hit=6014781
Planning Time: 0.044 ms
Execution Time: 958.258 ms

g A~ w N

([J
[J
Things your explain plan is not telling you Ants Aasma P2D2 2025 46/60 {]

What's going on

Index only scan looks at visibility map to check if we can skip the heap fetch
This happens for each row

It caches the location of the last looked at VM page and skips buffer lookup if
next one is the same.

e Example was constructed so this never works out.

Happens in the real world too with random access to tables >256MB
m See “Unexpected downsides of UUID keys in PostgreSQL” blogpost

([J
[J
Things your explain plan is not telling you Ants Aasma P2D2 2025 47/60 {]

https://www.cybertec-postgresql.com/en/unexpected-downsides-of-uuid-keys-in-postgresql/

Fixing it

® There are caches everywhere.
¢ Data locality matters.
e Use CLUSTER, fillfactor and other tricks to keep data sorted by access patterns.

([J
[J
Things your explain plan is not telling you Ants Aasma P2D2 2025 48/60 {]

Fixing it

® There are caches everywhere.
¢ Data locality matters.
e Use CLUSTER, fillfactor and other tricks to keep data sorted by access patterns.

CLUSTER bigger USING bigger_i_idx;

([J
[J
Things your explain plan is not telling you Ants Aasma P2D2 2025 48/60 {]

Results

1 Index Only Scan using bigger_i_idx on bigger (actual time=0.017..342.865 rows=6000000
loops=1)
Heap Fetches: @
Buffers: shared hit=14785
Planning Time: 0.042 ms
Execution Time: 500.547 ms

oA~ w N

~2x performance difference just from avoiding visibility map buffer lookups.

([J
[J
Things your explain plan is not telling you Ants Aasma P2D2 2025 49/60 {]

Chapter 3: Hello? Is this thing on?!

([J
[J
Things your explain plan is not telling you Ants Aasma P2D2 2025 50/60 {]

Trip down the memory lane

Taking our tasks table from before:

CREATE TABLE tasks (
id bigserial primary key,
job_id not null default (random()*10 + 1)::int,
status task_status not null,
added timestamptz not null default now(),
done timestamptz

]
[
Ants Aasma P2D2 2025 51/60 @

Things your explain plan is not telling you

New goal

We have a query:

SELECT id FROM tasks
WHERE job_id = 3 AND added
ORDER BY id;

Lets try a couple of indexes to make it fast

Things your explain plan is not telling you Ants Aasma

[]
([]
P2D2 2025 52/60 @

Tale of two indexes
CREATE INDEX j_i_a ON tasks (job_id, id, added);

1 Index Only Scan using j_i_a on tasks (actual time=1.207..1.207 rows=0 loops=1)

2 Index Cond : ((job_id = 3) AND (added < '1969-07-20 23:17:40+03'::timestamp with time
zone))

3 Heap Fetches: 0

4 Buffers: shared hit=300

CREATE INDEX j_a_i ON tasks (job_id, added, id);

1 Sort (actual time=0.020..0.021 rows=0 loops=1)
2 -> Index Only Scan using j_a_i on tasks (actual time=0.013..0.013 rows=0 loops=1)

3 Index Cond: ((job_id = 3) AND (added < '1969-07-20 23:17:40+03'::timestamp with
time zone))

4 Heap Fetches: @

5 Buffers: shared hit=3

([J
[J
Things your explain plan is not telling you Ants Aasma P2D2 2025 53/60 {]

The answer

* Index range scans (col < const) can only be used if all preceding index
columns have equality on them.

With (job_id, id, added) we cannot use added for scanning as it's unordered:

job_id [3 [3 [3 [3 [3
id 1 2 3 4 7
added 13:35] 17:49] 11:05] 19:12] 09:12]

But we can scan all for a single job_id and use the added for filtering.

The fact that Index Cond is only used for filtering is not visible anywhere in the
explain plan.

m Neither is the amount of index tuples scanned and discarded.

Rows Removed by Filter: only includes filters done on table values.

(
[J
Things your explain plan is not telling you Ants Aasma P2D2 2025 54/60 ([

Fin

([J
[J
Things your explain plan is not telling you Ants Aasma P2D2 2025 55/60 {]

What did we learn today

e Explain still doesn't explain everything
¢ |n particular, hidden detoasting and bloat scanning might make things slow.
e EXPLAIN is always improving, hopefully we will soon have more visibility.

([J
[J
Things your explain plan is not telling you Ants Aasma P2D2 2025 56/60 {]

Thank you

([J
[J
Things your explain plan is not telling you Ants Aasma P2D2 2025 57/60 {]

Q&A

([J
[J
Things your explain plan is not telling you Ants Aasma P2D2 2025 58/60 {]

Bonus content

([J
[J
Things your explain plan is not telling you Ants Aasma P2D2 2025 59/60 {]

More things to improve

How many of updates were HOT.

How many pages were pruned while scanning

How many index probes were done during planning

Hint bit updates log WAL, but this doesn’t show up with EXPLAIN (WAL)
SLRU accesses are completely hidden.

Getting explain plans from within functions is quite tricky.

When are extended statistics consulted.

How much time was spent waiting on locks.

([J
[J
Things your explain plan is not telling you Ants Aasma P2D2 2025 60/60 {]

	Hello
	Everybody loves explain
	Crash course on reading EXPLAIN
	Chapter 1: Why am I smelling TOAST
	Chapter 2: I (don’t) see dead tuples
	Chapter 3: Hello? Is this thing on?!
	Fin
	Thank you
	Q & A
	Bonus content

