
What is an SLRU anyway?

Álvaro Herrera – PostgreSQL developer, EDB

PostgreSQL Prague Developer Day
Prague, Czechia

29th January 2025

https://www.enterprisedb.com/
https://p2d2.cz/2025/

What is an SLRU?

• Simple Least Recently Used
• A mechanism to store transactional metadata

• And things with similar behavior
• Metadata examples:

• Transaction commit/abort status
• LISTEN / NOTIFY data
• transaction commit times

• Keeps fixed-size memory buffer of on-disk data

https://www.enterprisedb.com/
https://p2d2.cz/2025/

Development History: 1. pg_clog

• Simplistic pg_log pseudo-relation replaced with pg_clog
• Commit 2589735da08c: �

Replace implementation of pg_log as a relation accessed through the
buffer manager with ’pg_clog’, a specialized access method modeled
on pg_xlog.

Tom Lane, Sat Aug 25 18:52:43 2001 +0000, Postgres 7.2

• Initially, LRU is an internal pg_clog implementation detail
• Hardcoded buffer size of 8 pages

• Much later, pg_clog was renamed pg_xact, commit
88e66d193fba (2017).

https://git.postgresql.org/cgit/postgresql.git/commit/?id=2589735da08c
https://git.postgresql.org/cgit/postgresql.git/commit/?id=2589735da08c
https://git.postgresql.org/cgit/postgresql.git/commit/?id=2589735da08c
https://git.postgresql.org/cgit/postgresql.git/commit/?id=2589735da08c
https://git.postgresql.org/cgit/postgresql.git/commit/?id=2589735da08c
https://www.enterprisedb.com/
https://p2d2.cz/2025/

Development History: 1. pg_clog

• Simplistic pg_log pseudo-relation replaced with pg_clog
• Commit 2589735da08c: �

Replace implementation of pg_log as a relation accessed through the
buffer manager with ’pg_clog’, a specialized access method modeled
on pg_xlog.

Tom Lane, Sat Aug 25 18:52:43 2001 +0000, Postgres 7.2

• Initially, LRU is an internal pg_clog implementation detail
• Hardcoded buffer size of 8 pages

• Much later, pg_clog was renamed pg_xact, commit
88e66d193fba (2017).

https://git.postgresql.org/cgit/postgresql.git/commit/?id=2589735da08c
https://git.postgresql.org/cgit/postgresql.git/commit/?id=2589735da08c
https://git.postgresql.org/cgit/postgresql.git/commit/?id=2589735da08c
https://git.postgresql.org/cgit/postgresql.git/commit/?id=2589735da08c
https://git.postgresql.org/cgit/postgresql.git/commit/?id=2589735da08c
https://www.enterprisedb.com/
https://p2d2.cz/2025/

How does pg_clog work

• Two bits per transaction:
• 00 → “in-progress”
• 01 → “aborted”
• 10 → “committed”

• 0x100000 (decimal 1048576) transactions per file
• Four transactions per byte, 32768 transactions in one 8kB page
• 32 pages per file
• Files whose pages are all old enough can be removed
• 8 in-memory pages store the status of 32768 ∗ 8 = 262144

transactions

https://www.enterprisedb.com/
https://p2d2.cz/2025/

How does pg_clog work (2)

• Reading a tuple requires looking up status of its creating and
deleting transactions

• If committed, the result of this lookup is written in the tuple
metadata (“hint bits” in the “infomask”)

• Eventually, all older tuples are hinted and no more lookups are
needed

• As long as older tuples are “hinted” within 256k transactions,
little disk access is needed for pg_clog

https://www.enterprisedb.com/
https://p2d2.cz/2025/

Development History: 2. slru.c

• slru.c was born for nested transactions from pg_clog shortly
thereafter

• Commit 0abe7431c6d7: �
This patch extracts page buffer pooling and the simple
least-recently-used strategy from clog.c into slru.c.

Bruce Momjian for Manfred Koizar, Wed Jun 11 22:37:46 2003 +0000,

Postgres 7.4

• The term “slru” was invented at this point
• Nobody thought this name would ever be exposed to users

https://git.postgresql.org/cgit/postgresql.git/commit/?id=0abe7431c6d7
https://git.postgresql.org/cgit/postgresql.git/commit/?id=0abe7431c6d7
https://git.postgresql.org/cgit/postgresql.git/commit/?id=0abe7431c6d7
https://git.postgresql.org/cgit/postgresql.git/commit/?id=0abe7431c6d7
https://git.postgresql.org/cgit/postgresql.git/commit/?id=0abe7431c6d7
https://www.enterprisedb.com/
https://p2d2.cz/2025/

Development History: 3. pg_subtrans (2)

• pg_subtrans stores the transaction ID of the parent of each
transaction

• Commit 573a71a5da70: �
Nested transactions.
Tom Lane for Álvaro Herrera,

Thu Jul 1 00:52:04 2004 +0000, Postgres 8.0

• First user of slru.c outside pg_clog
• 4 bytes per transaction (16x larger than pg_clog!)
• 8 pages of 8kB each have room for 16536 transactions

https://git.postgresql.org/cgit/postgresql.git/commit/?id=573a71a5da70
https://git.postgresql.org/cgit/postgresql.git/commit/?id=573a71a5da70
https://git.postgresql.org/cgit/postgresql.git/commit/?id=573a71a5da70
https://git.postgresql.org/cgit/postgresql.git/commit/?id=573a71a5da70
https://www.enterprisedb.com/
https://p2d2.cz/2025/

How does pg_subtrans work?

• pg_subtrans responds to “is transaction X running?” in
presence of subtransactions

• ... but only for transactions with >64 subtransactions
• therefore, access is rare.

• With no subtransactions, shared memory access is
sufficient to know if a transaction is running

• We keep a cache of 64 running subtransactions in
shared memory

• Accessing pg_subtrans is only needed if the cache has
“overflowed”

https://www.enterprisedb.com/
https://p2d2.cz/2025/

Development History: 4. pg_multixact
• Commit bedb78d386a4: �

Implement sharable row-level locks, and use them for foreign key
references to eliminate unnecessary deadlocks.
Álvaro Herrera and Tom Lane

Thu Apr 28 21:47:18 2005 +0000, Postgres 8.1

• A two-level mechanism to store variable-sized arrays for a
single lookup key:

• Each MultiXactId is a pointer to pg_multixact/offset
• Each multixact offset is a pointer to pg_multixact/members
• We know how many members to read by reading the offset

after ours

https://git.postgresql.org/cgit/postgresql.git/commit/?id=bedb78d386a4
https://git.postgresql.org/cgit/postgresql.git/commit/?id=bedb78d386a4
https://git.postgresql.org/cgit/postgresql.git/commit/?id=bedb78d386a4
https://git.postgresql.org/cgit/postgresql.git/commit/?id=bedb78d386a4
https://git.postgresql.org/cgit/postgresql.git/commit/?id=bedb78d386a4
https://www.enterprisedb.com/
https://p2d2.cz/2025/

How does pg_multixact work?

https://www.enterprisedb.com/
https://p2d2.cz/2025/

How does pg_multixact work?

https://www.enterprisedb.com/
https://p2d2.cz/2025/

How does pg_multixact work?

https://www.enterprisedb.com/
https://p2d2.cz/2025/

Development History: 5. variable sized SLRUs

• Commit 887a7c61f630: �
Get rid of slru.c’s hardwired insistence on a fixed number of slots
per SLRU area. The number of slots is still a compile-time constant
(someday we might want to change that), but at least it’s a
different constant for each SLRU area. Increase number of subtrans
buffers to 32 based on experimentation with a heavily
subtrans-bashing test case, and increase number of multixact member
buffers to 16, since it’s obviously silly for it not to be at least
twice the number of multixact offset buffers.

Tom Lane, Tue Dec 6 23:08:34 2005 +0000, Postgres 8.2

https://git.postgresql.org/cgit/postgresql.git/commit/?id=887a7c61f630
https://git.postgresql.org/cgit/postgresql.git/commit/?id=887a7c61f630
https://git.postgresql.org/cgit/postgresql.git/commit/?id=887a7c61f630
https://git.postgresql.org/cgit/postgresql.git/commit/?id=887a7c61f630
https://git.postgresql.org/cgit/postgresql.git/commit/?id=887a7c61f630
https://git.postgresql.org/cgit/postgresql.git/commit/?id=887a7c61f630
https://git.postgresql.org/cgit/postgresql.git/commit/?id=887a7c61f630
https://git.postgresql.org/cgit/postgresql.git/commit/?id=887a7c61f630
https://git.postgresql.org/cgit/postgresql.git/commit/?id=887a7c61f630
https://git.postgresql.org/cgit/postgresql.git/commit/?id=887a7c61f630
https://www.enterprisedb.com/
https://p2d2.cz/2025/

Development History: 5. variable sized SLRUs

• Commit 887a7c61f630: �
Get rid of slru.c’s hardwired insistence on a fixed number of slots
per SLRU area. The number of slots is still a compile-time constant
(someday we might want to change that), but at least it’s a
different constant for each SLRU area. Increase number of subtrans
buffers to 32 based on experimentation with a heavily
subtrans-bashing test case, and increase number of multixact member
buffers to 16, since it’s obviously silly for it not to be at least
twice the number of multixact offset buffers.

Tom Lane, Tue Dec 6 23:08:34 2005 +0000, Postgres 8.2

https://git.postgresql.org/cgit/postgresql.git/commit/?id=887a7c61f630
https://git.postgresql.org/cgit/postgresql.git/commit/?id=887a7c61f630
https://git.postgresql.org/cgit/postgresql.git/commit/?id=887a7c61f630
https://git.postgresql.org/cgit/postgresql.git/commit/?id=887a7c61f630
https://git.postgresql.org/cgit/postgresql.git/commit/?id=887a7c61f630
https://git.postgresql.org/cgit/postgresql.git/commit/?id=887a7c61f630
https://git.postgresql.org/cgit/postgresql.git/commit/?id=887a7c61f630
https://git.postgresql.org/cgit/postgresql.git/commit/?id=887a7c61f630
https://git.postgresql.org/cgit/postgresql.git/commit/?id=887a7c61f630
https://git.postgresql.org/cgit/postgresql.git/commit/?id=887a7c61f630
https://www.enterprisedb.com/
https://p2d2.cz/2025/

Development History: 5. variable sized SLRUs

• Commit 887a7c61f630: �
Get rid of slru.c’s hardwired insistence on a fixed number of slots
per SLRU area. The number of slots is still a compile-time constant
(someday we might want to change that), but at least it’s a
different constant for each SLRU area. Increase number of subtrans
buffers to 32 based on experimentation with a heavily
subtrans-bashing test case, and increase number of multixact member
buffers to 16, since it’s obviously silly for it not to be at least
twice the number of multixact offset buffers.

Tom Lane, Tue Dec 6 23:08:34 2005 +0000, Postgres 8.2

https://git.postgresql.org/cgit/postgresql.git/commit/?id=887a7c61f630
https://git.postgresql.org/cgit/postgresql.git/commit/?id=887a7c61f630
https://git.postgresql.org/cgit/postgresql.git/commit/?id=887a7c61f630
https://git.postgresql.org/cgit/postgresql.git/commit/?id=887a7c61f630
https://git.postgresql.org/cgit/postgresql.git/commit/?id=887a7c61f630
https://git.postgresql.org/cgit/postgresql.git/commit/?id=887a7c61f630
https://git.postgresql.org/cgit/postgresql.git/commit/?id=887a7c61f630
https://git.postgresql.org/cgit/postgresql.git/commit/?id=887a7c61f630
https://git.postgresql.org/cgit/postgresql.git/commit/?id=887a7c61f630
https://git.postgresql.org/cgit/postgresql.git/commit/?id=887a7c61f630
https://www.enterprisedb.com/
https://p2d2.cz/2025/

(Short) theory of operation

When we require status of a transaction:
1 Scan linearly the array of buffers to see if one contains the

page we want
2 If we find it, we’re done
3 If not, the scan has chosen a “victim” buffer to evict (least

recently used)
4 Evict it, leaving buffer free
5 Load our page onto our buffer
6 Increment “recently used” counter
7 Now we can read the data we wanted

https://www.enterprisedb.com/
https://p2d2.cz/2025/

Development History: 6. pg_notify
• Commit d1e027221d02: �

Replace the pg_listener-based LISTEN/NOTIFY mechanism with an
in-memory queue.
Tom Lane for Joachim Wieland

Tue Feb 16 22:34:57 2010 +0000, Postgres 9.0

• This allowed NOTIFY to carry user-specified payload.
• SLRU buffer of 8 pages

• ... but pages only have to be retained until all backends read
notification messages

• ... which happens as soon as they run any command at all
• Small chances of overflowing the buffer

https://git.postgresql.org/cgit/postgresql.git/commit/?id=d1e027221d02
https://git.postgresql.org/cgit/postgresql.git/commit/?id=d1e027221d02
https://git.postgresql.org/cgit/postgresql.git/commit/?id=d1e027221d02
https://git.postgresql.org/cgit/postgresql.git/commit/?id=d1e027221d02
https://git.postgresql.org/cgit/postgresql.git/commit/?id=d1e027221d02
https://www.enterprisedb.com/
https://p2d2.cz/2025/

Development History: 7. pg_serial

• pg_serial
• Commit dafaa3efb75ce: �

Implement genuine serializable isolation level.
Heikki Linnakangas for Kevin Grittner and Dan Ports

Tue Feb 8 00:09:08 2011 +0200, Postgres 9.1

• First SERIALIZABLE implementation using serializable
snapshot isolation (best of class)

• SLRU buffer of 16 pages
• ... but lookups only occur once per command in serializable

transactions
• Much lower frequency
• Each item is 8 bytes long

https://git.postgresql.org/cgit/postgresql.git/commit/?id=dafaa3efb75ce
https://git.postgresql.org/cgit/postgresql.git/commit/?id=dafaa3efb75ce
https://git.postgresql.org/cgit/postgresql.git/commit/?id=dafaa3efb75ce
https://git.postgresql.org/cgit/postgresql.git/commit/?id=dafaa3efb75ce
https://www.enterprisedb.com/
https://p2d2.cz/2025/

Development History: 7. pg_serial

• pg_serial
• Commit dafaa3efb75ce: �

Implement genuine serializable isolation level.
Heikki Linnakangas for Kevin Grittner and Dan Ports

Tue Feb 8 00:09:08 2011 +0200, Postgres 9.1

• First SERIALIZABLE implementation using serializable
snapshot isolation (best of class)

• SLRU buffer of 16 pages
• ... but lookups only occur once per command in serializable

transactions
• Much lower frequency
• Each item is 8 bytes long

https://git.postgresql.org/cgit/postgresql.git/commit/?id=dafaa3efb75ce
https://git.postgresql.org/cgit/postgresql.git/commit/?id=dafaa3efb75ce
https://git.postgresql.org/cgit/postgresql.git/commit/?id=dafaa3efb75ce
https://git.postgresql.org/cgit/postgresql.git/commit/?id=dafaa3efb75ce
https://www.enterprisedb.com/
https://p2d2.cz/2025/

Development History 8: Make pg_clog size adaptive

• Commit 33aaa139e630: �
Make the number of CLOG buffers adaptive, based on shared_buffers.

Robert Haas, Fri Jan 6 14:30:23 2012 -0500, Postgres 9.2

• First case of runtime-determined SLRU size
• 32 buffers with shared_buffers=128MB and up

• But not directly configurable!

https://git.postgresql.org/cgit/postgresql.git/commit/?id=33aaa139e630
https://git.postgresql.org/cgit/postgresql.git/commit/?id=33aaa139e630
https://git.postgresql.org/cgit/postgresql.git/commit/?id=33aaa139e630
https://www.enterprisedb.com/
https://p2d2.cz/2025/

Development History: 9. pg_commit_ts

• pg_commit_ts: commit timestamps
• Commit 73c986adde5d: �

Keep track of transaction commit timestamps

Álvaro Herrera, Wed Dec 3 11:53:02 2014 -0300, Postgres 9.5

• 12 bytes per entry
• For use with BDR

• open-source bi-directional replication implementation
• ... for conflict resolution

• Size is adaptive like pg_clog, but grows more slowly and the
upper limit is smaller (16 buffers)

• (Theory behind this: not needed for long)

https://git.postgresql.org/cgit/postgresql.git/commit/?id=73c986adde5d
https://git.postgresql.org/cgit/postgresql.git/commit/?id=73c986adde5d
https://git.postgresql.org/cgit/postgresql.git/commit/?id=73c986adde5d
https://www.enterprisedb.com/
https://p2d2.cz/2025/

What SLRUs exist

• pg_xact (neé pg_clog), adaptive
• pg_subtrans, 32 pages
• pg_multixact/offset, 8 pages
• pg_multixact/members, 16 pages
• pg_notify, 8 pages
• pg_serial, 8 pages
• pg_commit_ts, adaptive

https://www.enterprisedb.com/
https://p2d2.cz/2025/

Performance Problem Reported (1)

Andrey Borodin reports to pgsql-hackers:
I’m investigating some cases of reduced database performance due to Mul-
tiXactOffsetLock contention (80% MultiXactOffsetLock, 20% IO DataFi-
leRead). The problem manifested itself during index repack and constraint
validation. Both being effectively full table scans.

pgsql-hackers: MultiXact\SLRU buffers configuration �

(Fri, 8 May 2020 21:36:40 +0500)

https://postgr.es/m/2BEC2B3F-9B61-4C1D-9FB5-5FAB0F05EF86@yandex-team.ru
https://www.enterprisedb.com/
https://p2d2.cz/2025/

• Using artificial reproducer

database=# SELECT pid, wait_event, wait_event_type, state, query
database-# FROM pg_stat_activity \watch 1

Friday, 8 Mar 2020 15:08:37 (every 1s)

pid | wait_event | wait_event_type | state | query
-------+----------------------------+-----------------+--------+--
41344 | ClientRead | Client | idle | insert into t1 select generate_series(1,1000000,1)
41375 | MultiXactOffsetControlLock | LWLock | active | select * from t1 where i = ANY ($1) for share
41377 | MultiXactOffsetControlLock | LWLock | active | select * from t1 where i = ANY ($1) for share
41378 | | | active | select * from t1 where i = ANY ($1) for share
41379 | MultiXactOffsetControlLock | LWLock | active | select * from t1 where i = ANY ($1) for share
41381 | | | active | select * from t1 where i = ANY ($1) for share
41383 | MultiXactOffsetControlLock | LWLock | active | select * from t1 where i = ANY ($1) for share
41385 | MultiXactOffsetControlLock | LWLock | active | select * from t1 where i = ANY ($1) for share

https://www.enterprisedb.com/
https://p2d2.cz/2025/

Performance Problem Reported (2)

CREATE TABLE eventwaits (
tstamp timestamp with time zone,
count int,
event_type text,
event text

);
INSERT INTO eventwaits

SELECT now(), count(*), wait_event_type, wait_event
FROM pg_stat_activity

WHERE state = 'active' AND
wait_event_type NOT IN ('Timeout', 'Client', 'Activity')

\watch 0.01

https://www.enterprisedb.com/
https://p2d2.cz/2025/

How to detect a problem

• ... or use pg_wait_sampling
• https://github.com/postgrespro/pg_wait_sampling

https://github.com/postgrespro/pg_wait_sampling
https://www.enterprisedb.com/
https://p2d2.cz/2025/

History of the proposed fix

• pgsql-hackers: MultiXact\SLRU buffers configuration �

(Fri, 8 May 2020 21:36:40 +0500)

• Andrey Borodin proposes configurable buffer sizes in
postgresql.conf

https://postgr.es/m/2BEC2B3F-9B61-4C1D-9FB5-5FAB0F05EF86@yandex-team.ru
https://www.enterprisedb.com/
https://p2d2.cz/2025/

Performance Problem Reported (2)
Gilles Darold:

Some time ago I have encountered a contention on MultiXactOffsetContro-
lLock with a performance benchmark. Here are the wait event monitoring
result with a polling each 10 seconds and a 30 minutes run for the bench-
mark:

event_type | event | sum
------------+----------------------------+----------
Client | ClientRead | 44722952
LWLock | MultiXactOffsetControlLock | 30343060
LWLock | multixact_offset | 16735250
LWLock | MultiXactMemberControlLock | 1601470
LWLock | buffer_content | 991344

https://postgr.es/m/6ba7eae2-8b0c-0690-11a5-e921e6586180@darold.net
https://www.enterprisedb.com/
https://p2d2.cz/2025/

What was the Performance Problem (2)

Gilles Darold:
After reading this thread I changed the value of the buffer size to 32 and
64 and obtain the following results:

Increasing buffer sizes from (8, 16) to (32, 64):

event_type | event | sum
------------+----------------------------+-----------
Client | ClientRead | 268297572
LWLock | MultiXactMemberControlLock | 65162906
LWLock | multixact_member | 33397714
LWLock | buffer_content | 4737065

https://www.enterprisedb.com/
https://p2d2.cz/2025/

What was the Performance Problem (2)

Gilles Darold:
I have increased the buffers to 128 and 512 and obtain the best results for
this benchmark:

Increasing buffer sizes to (128, 512)

event_type | event | sum
------------+----------------------------+-----------
Client | ClientRead | 160463037
LWLock | MultiXactMemberControlLock | 5334188
LWLock | buffer_content | 5228256
LWLock | buffer_mapping | 2368505
LWLock | SubtransControlLock | 2289977

https://www.enterprisedb.com/
https://p2d2.cz/2025/

(Short) theory of operation (2)

When choosing a victim buffer:
1 Scan all buffers in the array
2 If one is marked free, choose that one; we’re done
3 Keep track of the one with lowest “recently used” counter
4 If we scanned all buffers, the victim is the one we memoized

Therefore, a very large array of SLRU buffers is un-
desirable because scanning it would take a long time

https://www.enterprisedb.com/
https://p2d2.cz/2025/

Increasing Buffer Size is not Enough

Andrey Borodin again:
I have one more idea inspired by CPU caches. Let’s make SLRU n-
associative, where n ˜ 8. We can divide buffers into “banks”, number
of banks must be power of 2. [...] Each page can live only within
one bank. We use same search and eviction algorithms as we used in
SLRU, but we only need to search/evict over 8 elements.

• pgsql-hackers: MultiXact\SLRU buffers configuration �

(Sun, 11 Apr 2021 21:37:21 +0300)
• Dividing the buffers in banks allows much larger buffer sizes
• ... without affecting performance of buffer search

https://postgr.es/m/494C5E7F-E410-48FA-A93E-F7723D859561@yandex-team.ru
https://www.enterprisedb.com/
https://p2d2.cz/2025/

pg_stat_slru

• pg_stat_slru was born as the initial problem was being
discussed

• Commit 28cac71bd368: �
Collect statistics about SLRU caches

Tomas Vondra, Thu Apr 2 02:11:38 2020 +0200, Postgres 13

https://git.postgresql.org/cgit/postgresql.git/commit/?id=28cac71bd368
https://git.postgresql.org/cgit/postgresql.git/commit/?id=28cac71bd368
https://git.postgresql.org/cgit/postgresql.git/commit/?id=28cac71bd368
https://www.enterprisedb.com/
https://p2d2.cz/2025/

pg_stat_slru

name blks_zeroed blks_hit blks_read blks_written
-----------------+-------------+-------------+-----------+--------------
commit_timestamp | 1284048 | 387594150 | 54530 | 1305858
multixact_member | 30252 | 23852620477 | 48555852 | 26106
multixact_offset | 10638 | 23865848376 | 18434993 | 9375
notify | 0 | 0 | 0 | 0
serializable | 0 | 0 | 0 | 0
subtransaction | 513486 | 12127027243 | 153119082 | 431238
transaction | 32107 | 22450403108 | 72043892 | 18064
other | 0 | 0 | 0 | 0

https://www.enterprisedb.com/
https://p2d2.cz/2025/

Monitoring SLRU cache ratios

suggested monitoring
SELECT name, blks_zeroed, blks_read,

blks_hit+blks_read AS blks_accessed,
CASE WHEN blks_hit+blks_read = 0 THEN 'NaN'

ELSE (blks_hit::numeric / (blks_hit+blks_read))
::numeric(4,2) END AS hit_ratio

FROM pg_stat_slru;

https://www.enterprisedb.com/
https://p2d2.cz/2025/

Monitoring numbers
SELECT name, blks_zeroed, blks_read, blks_hit+blks_read AS blks_accessed,

CASE WHEN blks_hit+blks_read = 0 THEN 'NaN'
ELSE (blks_hit::numeric / (blks_hit+blks_read))::numeric(4,2) END AS hit_ratio
FROM pg_stat_slru;

name blks_zeroed blks_read blks_accessed hit_ratio
commit_timestamp 2674 1 2148271 1.00
multixact_member 158 257 309927 1.00
multixact_offset 63 117 309630 1.00
notify 0 0 0 NaN
serializable 0 0 0 NaN
subtransaction 2673 0 390133 1.00
transaction 166 796 20609643 1.00
other 0 0 0 NaN

https://www.enterprisedb.com/
https://p2d2.cz/2025/

Finalizing a Solution

Dilip Kumar further analyzed the problem on customer systems,
created reproducers and posted a new proposal:

Just increasing the size of the buffer pool doesn’t necessarily help, because
the linear search that we use for buffer replacement doesn’t scale, and also
because contention on the single centralized lock limits scalability.

pgsql-hackers: SLRU optimization - configurable buffer pool and partitioning the

SLRU lock (Wed, 11 Oct 2023 16:34:37 +0530) �

https://postgr.es/m/CAFiTN-vzDvNz=ExGXz6gdyjtzGixKSqs0mKHMmaQ8sOSEFZ33A@mail.gmail.com
https://postgr.es/m/CAFiTN-vzDvNz=ExGXz6gdyjtzGixKSqs0mKHMmaQ8sOSEFZ33A@mail.gmail.com
https://www.enterprisedb.com/
https://p2d2.cz/2025/

Proposed Changes to SLRUs

In addition to Andrey Borodin’s ideas:
• Configurable buffer sizes
• Split each buffer area in banks

Dilip Kumar proposed:
• Make the locking occur per bank rather than globally
• Modify operations to LRU counter to use atomic access

https://www.enterprisedb.com/
https://p2d2.cz/2025/

Subtransaction TPS improvement

https://www.enterprisedb.com/
https://p2d2.cz/2025/

Multixact TPS improvement

https://www.enterprisedb.com/
https://p2d2.cz/2025/

Performance fixes in Postgres 17

• Commit d172b717c6f4: �
Use atomic access for SlruShared->latest_page_number
Álvaro Herrera for Dilip Kumar,

Tue Feb 6 10:54:10 2024 +0100, Postgres 17

• Commit 53c2a97a9266: �
Improve performance of subsystems on top of SLRU
Álvaro Herrera for Andrey Borodin and Dilip Kumar,

Wed Feb 28 17:05:31 2024 +0100, Postgres 17

https://git.postgresql.org/cgit/postgresql.git/commit/?id=d172b717c6f4
https://git.postgresql.org/cgit/postgresql.git/commit/?id=d172b717c6f4
https://git.postgresql.org/cgit/postgresql.git/commit/?id=d172b717c6f4
https://git.postgresql.org/cgit/postgresql.git/commit/?id=d172b717c6f4
https://git.postgresql.org/cgit/postgresql.git/commit/?id=53c2a97a9266
https://git.postgresql.org/cgit/postgresql.git/commit/?id=53c2a97a9266
https://git.postgresql.org/cgit/postgresql.git/commit/?id=53c2a97a9266
https://git.postgresql.org/cgit/postgresql.git/commit/?id=53c2a97a9266
https://www.enterprisedb.com/
https://p2d2.cz/2025/

The new GUCs

• A few must be set to nonzero values, defaults are similar to
before

• Up to 1024 MB in multiples of 16
• the bank size

new postgresql.conf lines, defaults
SLRU buffers (change requires restart)
multixact_offset_buffers = 16
multixact_member_buffers = 32
notify_buffers = 16
serializable_buffers = 32

https://www.enterprisedb.com/
https://p2d2.cz/2025/

The new GUCs: autoscaling

• A few are automatically derived from on shared_buffers:

new postgresql.conf lines
commit_timestamp_buffers = 0
subtransaction_buffers = 0
transaction_buffers = 0

• 2 MB for each 1024 MB of shared_buffers
• Up to a maximum of 8 MB
• Can still be set manually

https://www.enterprisedb.com/
https://p2d2.cz/2025/

Thanks!

Questions?

Álvaro Herrera, EDB
alvherre@alvh.no-ip.org

alvaro.herrera@enterprisedb.com
Mastodon: https://lile.cl/@alvherre/

mailto:alvherre@alvh.no-ip.org
https://lile.cl/@alvherre
https://www.enterprisedb.com/
https://p2d2.cz/2025/

