
When Autovacuum
Met FinOps: A
Cloud Romance

Mayur – DB Specialist@Veeam

Romance? It only happens in the Movies.

Typical DBA/DEV Complaints

• "Autovacuum used to fly on bare-metal, but in the cloud, it
feels like it's dragging forever!“

• "I've doubled the max_autovacuum_workers, yet dead
tuples just keep stacking up“

• "Every time Autovacuum kicks in on that big table, our
application queries start timing out!"

AutoVacuum : The most hard-working employee in your company.

AutoVacuum

Removes dead
tuples.

Updates planner
statistics.

Updates visibility
map.

Prevents txid
wraparound failures.

Important Parameters

• Autovacuum throughput is constrained by the
autovacuum_vacuum_cost_limit,
autovacuum_vacuum_cost_delay and further limited by host
restrictions on Cloud.

• Autovacuum_vacuum_cost_limit gets divided among number
of workers specified by autovacuum_max_workers.

• Autovacuum_work_mem controls the amount of memory
used by each worker.

How much io?

#At most, Autovacuum can do IO as shown below
Max Autovacuum throughput =
(1000/autovacuum_vacuum_cost_delay) *
(autovacuum_vacuum_cost_limit/vacuum_cost_page_hit) * 8
KB (default block_size)

#For PG17 default settings:
Max Autovacuum throughput = (1000/2) * (200/1) * 8 KB =
800MB per second

Instance and Storage both limit throughput

Instance
throughput
limit

Instance
throughput
limit

Storage
throughput
limit

Storage
throughput
limit

GP3 saves
the day

Min. Config for 500MB/s throughput, 1TB db

Cloud Storage (all SSDs but
taking only cost-efficient
type)

Compute (Instance class) Monthly Cost (in US-East)

AZURE
(Azure Database for
PostgreSQL — Flexible
Server)

Premium SSD (5K iops for
500MB/s)

D16ds_v5 $1407

AWS
(Amazon RDS – Postgres)

GP3 (16K iops minimum
for 500MB/s)

m7g.4xlarge $1462

GCP
(Cloud SQL – Postgres)

Zonal extreme-pd 8 vCPUs $497

Why should you
understand
costs?

Why should
you
understand
costs?

Juggling Cost,
Autovacuum
Efficiency, and
Application
Performance

AV Tuning Flow : A picture is worth a thousand words

The Low Hanging Fruit

Reason for autovacuum_work_mem 1GB restriction (Pre-PG17)

Budget constraints = Think creatively

• Consider partitioning problematic tables, Size of data and indexes
reduces.

• Detect and drop unused indexes (since PG vacuums all indexes).

• Minimize long-running transactions (lower wasteful vacuum runs).

• If it still impacts application performance, you may need to dial back
cost limit and increase cost delay.

• Always implement an Early Warning System for TXID wraparound
(AWS offers a detailed guide on this).

• Last but not the least, upgrade to PG17 for improved vacuuming.

https://aws.amazon.com/blogs/database/implement-an-early-warning-system-for-transaction-id-wraparound-in-amazon-rds-for-postgresql/

Adapt to the nature of the beast.

• Thousands of DB’s (in cloud) => Start with
less aggressive settings for AV.

• Implement early warning system for txid
wraparound exhaustion.

• Set log_autovacuum_min_duration and do
log mining, create automated alert for
tables appearing repeatedly.

• Increase cost limit gradually on need basis.

• If just a few PET DBs then take scientific
approach of calculating optimal value for
all AV settings.

John Lennon was
a Postgres DBA

As soon as you’re born, they
make you feel small

By giving you no time instead of
it all

’Til the pain is so big you feel
nothing at all

A working class hero is
something to be

A working class hero is
something to be

References:

https://www.percona.com/blog/tuning-autovacuum-in-postgresql-and-autovacuum-internals/

https://calculator.aws/#/

https://azure.microsoft.com/en-us/pricing/details/postgresql/flexible-server

https://cloud.google.com/sql/docs/postgres/pricing

https://www.percona.com/blog/tuning-autovacuum-in-postgresql-and-autovacuum-internals/
https://azure.microsoft.com/en-us/pricing/details/postgresql/flexible-server
https://cloud.google.com/sql/docs/postgres/pricing

Thank you

Database Comedy Blog

	Slide 1: When Autovacuum Met FinOps: A Cloud Romance
	Slide 2: Romance? It only happens in the Movies.
	Slide 3: Typical DBA/DEV Complaints
	Slide 4
	Slide 5
	Slide 6: Important Parameters
	Slide 7: How much io?
	Slide 8: Instance and Storage both limit throughput
	Slide 9: Instance throughput limit
	Slide 10: Instance throughput limit
	Slide 11: Storage throughput limit
	Slide 12: Storage throughput limit
	Slide 13: GP3 saves the day
	Slide 14: Min. Config for 500MB/s throughput, 1TB db
	Slide 15: Why should you understand costs?
	Slide 16: Why should you understand costs?
	Slide 17: Juggling Cost, Autovacuum Efficiency, and Application Performance
	Slide 18
	Slide 19: The Low Hanging Fruit
	Slide 20: Reason for autovacuum_work_mem 1GB restriction (Pre-PG17)
	Slide 21: Budget constraints = Think creatively
	Slide 22: Adapt to the nature of the beast.
	Slide 23: John Lennon was a Postgres DBA
	Slide 24: References: https://www.percona.com/blog/tuning-autovacuum-in-postgresql-and-autovacuum-internals/ https://calculator.aws/#/ https://azure.microsoft.com/en-us/pricing/details/postgresql/flexible-server https://cloud.google.com/sql/docs/post
	Slide 25: Thank you
	Slide 26

