
Esther Minano Sanz

Jan 2025

1

2

Staff Software Engineer @ Xata

The path towards extending PostgreSQL

What we learnt along the way

3

Replication in PostgreSQL01 Logical replication of DDL02

PostgreSQL Elasticsearch03 Webhooks using logical
replication04

pgstream05

4

DML

Data Manipulation Language

INSERT, UPDATE, DELETE,...

5

DDL

Data Definition Language

CREATE, ALTER, DROP…

When to use replication?
6

Sync data between PostgreSQL database servers

Sync data from PostgreSQL to any other data store

React to PostgreSQL events in near real time

High availability

Load balancing

Backup and disaster recovery

Analytics offloading

Write Ahead Log
7

Sequential transaction log of database changes

Append only file

Transaction → WAL buffer → WAL segment file → Commit

Critical for crash recovery

Reduced disk operations

Log Sequence Number - XLOG record unique ID

Types of replication
8

LOGICAL REPLICATION

Continuous streaming of logically decoded WAL changesets
over the network. Best for replication in publisher/subscriber
architectures.

FEATURES

Selective replication

Transaction level integrity

Cross version compatibility

Increased server load

Data consistency challenges

No DDL/schema changes

LIMITATIONS

Replica identity required

Target database can be writable

PHYSICAL REPLICATION

Continuous streaming of WAL records over the network.
Best for replication in master-replica architectures.

FEATURES

11 Data consistency

Version compatibility

Limited flexibility

File and record based log support

High network usage

Target database must be read-only

Resilience to data loss

LIMITATIONS

No primary disruption

9

10

Logical replication of DDL

Stateful replication

Stateless replication

Table created in source database to keep state

Uses triggers and functions

No table or state required on source database

11

Stateful
DDL

Replication

12

Stateful DDL replication 1/9

Create a dedicated table to track schema changes

Capture schema on DDL events via triggers

Insert captured schema details into dedicated schema log table

Replicate events from schema log table

13

● Table information (schema, table name, oid)

○ pg_namespace, pg_class

● Column information (type, default, nullable, unique)

○ pg_attribute, pg_attrdef, pg_type, pg_catalog, pg_enum

● Primary key columns

○ pg_index, pg_attribute

● Constraints (check, unique, foreign keys)

○ pg_constraint

● Indices

○ pg_index

Stateful DDL replication 2/9

Extracting the schema

14

● Get all table names/ids for a given database schema

 SELECT DISTINCT

 pg_namespace.nspname AS schema_name,

 pg_class.relname AS table_name,

 pg_class.oid AS table_oid

 FROM pg_namespace

 RIGHT JOIN pg_class ON pg_namespace.oid = pg_class.relnamespace AND pg_class.relkind IN ('r', 'p')

 WHERE pg_namespace.nspname = schema_name;

Stateful DDL replication 3/9

15

● Extract column information

 SELECT

 pg_attribute.attname AS column_name,

 format_type(pg_attribute.atttypid, pg_attribute.atttypmod) AS column_type,

 pg_get_expr(pg_attrdef.adbin, pg_attrdef.adrelid) AS column_default,

 NOT (pg_attribute.attnotnull OR pg_type.typtype = 'd' AND pg_type.typnotnull) AS column_nullable,

 (EXISTS

 (SELECT 1 FROM pg_constraint WHERE conrelid = pg_attribute.attrelid AND ARRAY[pg_attribute.attnum::int] @> conkey::int[] AND contype = 'u')

 OR EXISTS

 (SELECT 1 FROM pg_index JOIN pg_class ON pg_class.oid = pg_index.indexrelid WHERE indrelid = pg_attribute.attrelid AND indisunique

 AND ARRAY[pg_attribute.attnum::int] @> pg_index.indkey::int[])

) AS column_unique,

 pg_catalog.col_description(table_oids.table_oid,pg_attribute.attnum) AS column_description

 FROM pg_attribute

 JOIN table_oids ON pg_attribute.attrelid = table_oids.table_oid

 JOIN pg_type ON pg_attribute.atttypid = pg_type.oid

 LEFT JOIN pg_attrdef ON pg_attribute.attrelid = pg_attrdef.adrelid AND pg_attribute.attnum = pg_attrdef.adnum

 WHERE pg_attribute.attnum >= 1 -- less than 1 is reserved for system resources

 AND NOT pg_attribute.attisdropped; -- will be `true` if column is being dropped

Stateful DDL replication 4/9

16

● Aggregate per table full information (columns, primary keys)
 SELECT

 columns.table_name AS table_name,

 columns.table_oid AS table_oid,

 jsonb_agg(jsonb_build_object(

 'name', columns.column_name,

 'type', columns.column_type,

 'default', columns.column_default,

 'nullable', columns.column_nullable,

 'unique', columns.column_unique,

 description, columns.column_description

)) AS table_columns,

 (SELECT COALESCE(json_agg(pg_attribute.attname), '[]'::json)

 FROM pg_index, pg_attribute

 WHERE

 indrelid = columns.table_oid AND

 pg_attribute.attrelid = columns.table_oid AND

 pg_attribute.attnum = any(pg_index.indkey)

 AND indisprimary

) AS primary_key_columns

 FROM columns

 GROUP BY table_name, table_oid, table_pgs_id;

Stateful DDL replication 5/9

17

● Create a function to get the schema in JSON format

CREATE OR REPLACE FUNCTION get_schema(schema_name TEXT) RETURNS jsonb

 LANGUAGE SQL

 SET search_path = pg_catalog,pg_temp

 AS $$

<...>

 SELECT

 jsonb_build_object(

 'tables',

 jsonb_agg(jsonb_build_object(

 'oid', tables.table_oid,

 'name', tables.table_name,

 'columns', tables.table_columns ,

 'primary_key_columns' , tables.primary_key_columns

))

) AS schema_view_json

 FROM tables;

$$;

Stateful DDL replication 6/9

18

● Create a schema log table to keep track of schema details

 CREATE TABLE IF NOT EXISTS schema_log (

 id uuid PRIMARY KEY DEFAULT gen_random_uuid(),

 version BIGINT NOT NULL,

 schema_name TEXT NOT NULL,

 schema JSONB NOT NULL,

 created_at TIMESTAMP NOT NULL DEFAULT NOW(),

);

CREATE UNIQUE INDEX IF NOT EXISTS schema_log_version_uniq ON schema_log(schema_name, version);

Stateful DDL replication 7/9

19

● Create a function to populate schema_log table with schema view
CREATE OR REPLACE FUNCTION log_schema() RETURNS event_trigger

 LANGUAGE plpgsql

 SECURITY DEFINER

 SET search_path = pg_catalog,pg_temp

 AS $$

DECLARE

 rec_objid oid; -- used for deletes

 rec_schema_name text;

 schema_version bigint;

 is_system_schema boolean;

BEGIN

 IF tg_tag = 'DROP SCHEMA' AND tg_event = 'sql_drop' THEN

 SELECT object_name INTO rec_schema_name FROM pg_event_trigger_dropped_objects() WHERE object_type = 'schema' LIMIT 1;

 IF rec_schema_name IS NOT NULL THEN

 SELECT COALESCE((SELECT version+1 FROM "schema_log" WHERE schema_name = rec_schema_name ORDER BY version DESC LIMIT 1), 1) INTO schema_version;

 -- a dropped schema log entry is constant, has no tables AND has the dropped flag set to true.

 INSERT INTO "schema_log" (version, schema_name, schema) VALUES (schema_version, rec_schema_name, '{"tables": null, "dropped": true}'::jsonb);

 -- remove all log entries of current schema, with the exception of 'dropped' entry

 DELETE FROM "schema_log" WHERE schema_name = rec_schema_name AND ((schema->'dropped')::bool IS NULL OR NOT (schema->'dropped')::bool);

 END IF;

 elsif tg_tag = 'DROP TABLE' AND tg_event = 'sql_drop' THEN

 SELECT objid, schema_name INTO rec_objid, rec_schema_name FROM pg_event_trigger_dropped_objects() WHERE object_type = 'table' LIMIT 1;

 IF rec_schema_name IS NOT NULL THEN

 SELECT COALESCE((SELECT version+1 FROM "schema_log" WHERE schema_name = rec_schema_name ORDER BY version DESC LIMIT 1), 1) INTO schema_version;

 INSERT INTO "schema_log" (version, schema_name, schema) VALUES (schema_version, rec_schema_name, get_schema(rec_schema_name));

 END IF;

 elsif tg_event = 'ddl_command_end' THEN

 IF tg_tag = 'CREATE SCHEMA' THEN

 SELECT object_identity INTO rec_schema_name FROM pg_event_trigger_ddl_commands() WHERE object_type = 'schema' AND command_tag = 'CREATE SCHEMA' LIMIT 1;

 elsif tg_tag = 'CREATE TABLE' THEN

 SELECT schema_name INTO rec_schema_name FROM pg_event_trigger_ddl_commands() WHERE object_type = 'table' AND command_tag = 'CREATE TABLE' LIMIT 1;

 elsif tg_tag = 'ALTER TABLE' THEN

 SELECT schema_name INTO rec_schema_name FROM pg_event_trigger_ddl_commands() WHERE object_type IN ('table', 'table column') AND command_tag = 'ALTER TABLE' LIMIT 1;

 END IF;

 IF rec_schema_name IS NOT NULL THEN

 SELECT COALESCE((SELECT version+1 FROM "schema_log" WHERE schema_name = rec_schema_name ORDER BY version DESC LIMIT 1), 1) INTO schema_version;

 INSERT INTO "schema_log" (version, schema_name, schema) VALUES (schema_version, rec_schema_name, get_schema(rec_schema_name));

 END IF;

 END IF;

END;

$$;

Stateful DDL replication 8/9

20

● Create triggers to log schema changes

CREATE EVENT TRIGGER log_schema_create_alter_table ON ddl_command_end EXECUTE FUNCTION log_schema();

CREATE EVENT TRIGGER log_schema_drop_schema_table ON sql_drop WHEN tag IN ('DROP TABLE', 'DROP SCHEMA') EXECUTE FUNCTION log_schema();

Stateful DDL replication 9/9

21

Stateless
DDL

Replication

22

● Column added/dropped

● ‘Rʼ relation message sent + new schema

● New row

● Column type change

○ ‘Tʼ type relation message sent + new schema

○ New row

Stateless DDL replication

Rely on logical replication messages

Perform a diff of new and previous schema

● SELECT * FROM <table> LIMIT 0;

● Inspect row field descriptors

Stateless vs Stateful DDL replication
23

LIMITATIONS

STATEFUL

Flexible schema representation

Requires triggers and functions

Requires dedicated table

No additional server impact

STATELESS

Low maintenance cost

Schema diff required

24

25

Why?

PostgreSQL Full Text Search

Offload operational and performance complexity

● Requires reindexing on every write

● Increased load on search read queries

26

ElasticSearch

Search and analytics engine

NoSQL document store

Index

● Structured data encoded in JSON
● Unique identifier

● Collection of documents
● Inverted indices (content → location)

Mapping

● How documents and fields are stored and indexed
● Append supported
● Most mapping changes require reindexing

27

Lessons learnt 1/2

Column type/value mapping

Avoid reindexing when possible

● No dedicated array types in ElasticSearch

● Explicit mapping of vectors

● Timestamp regex match

● Renames
○ Use immutable unique identifiers for column mappings

○ Use aliases

● Column data type changes
○ Create a new field in the mapping for the new type

○ Old data would not be available until itʼs reindexed

28

Lessons learnt 2/2

TOAST columns

Out of order events

● Values that donʼt fit in a page are stored separately by PostgreSQL

● If they are not updated, they are not included in the replication event

● Enable `REPLICA IDENTITY FULL`

● Use primary key(s) as event ID

● Use LSN 64 bit integer) as event version

Denormalization

● Relational relationships are lost

● Use Elasticsearch ingest pipelines

The Oversized Attribute Storage Technique

29

30

Limitations of PostgreSQL Triggers

Increased server load

● Infinite loops, increased CPU usage, database locking

● Potential performance impact, or database crashing

Data inconsistency

● Conflicting triggers applied to the same tables

Execution errors

Maintenance overhead

Should be used sparingly, and be executed quickly and efficiently

31

Webhooks using PostgreSQL logical replication

Get notifications for relevant change events on near real time

Integrate with any service

Low maintenance overhead

● Manage notification subscriptions without impacting the database

No performance impact on workload

● Decouple slow event processors from database

32

PostgreSQL replication using webhooks

33

https://github.com/xataio/pgstream

34

Open source CLI tool and
library written in Go and made

for PostgreSQL.

OSS

Designed to be easy to
expand and configure, to

multiply the use case
coverage.

Continuous replication of
schema changes along with

data.

Modular DDL tracking

35

Out of the box support to
replicate to Elasticsearch and

Opensearch.

Search outputs

Lightweight webhook
integration supported with

subscription server included.

Supports snapshots of
selected database tables on

startup.

Webhook notifications Fast initial snapshots

36

t

Postgres to
Postgres

replication

t

Improved filtering

t

Anonymisation
and subsetting

support

Coming up soon…

37

For more

https://github.com/xataio/pgstream https://xata.io/blog

https://github.com/xataio/pgroll

38

@xata

