Google Cloud - ®

a7 Ol
<1 (=

PostgreSQL : o

Advance Performance Tuning

Somdyuti Paul (Som)
Google, EMEA DataManagement Specialist

L)

Contents

Database Flags - Migrating from Oracle?
Checkpoints, Commits and Performance
Reduce Query Planning Time

Optimize Join Methods and Join Orders
Optimize Queries on Partitioned Tables
Optimize Parallel Queries

A Strange Use Case on Full Index Scan
Basic Performance Housekeeping

Parameters/Flags

Google Cloud

Configure Memory Related Parameters

Oracle Postares Recommended Values Comment Needs Restart in | Effect on System Recommended to
9 in CloudsSQL CloudSQL Resources modify in Postgres
. Higher value will
Csogﬁggol/n of reduce disk I/O but Yes-if workload is big
sga_target shared_buffers 30-50% of RAM RAM SO‘VOin Yes anything > 70% of enough; there is more
A"(; D; RAM can cause disk access.
4 swapping
Yes-

maintenance_work_me
m,larger settings might
improve performance for
vacuuming, bulk index
build

and for restoring

database dumps.Higher
value recommended for
apps doing large ETL

Maintenance_wor
k_mem can be set
up to 20% of RAM
for applications
doing large ETL;
for large bulk

shared_buffers=30-50% of
RAM,
work_mem=16MB-128MB,
maintenance_work_mem=
64MB to 2 GB

Yes(shared_buffers),
No(work_mem,maint
enance_work_mem)

Higher values will lead

shared_buffers+w
to more RAM Usage

ork_mem-+mainten

memory_target
ance_work_mem

vacuums
operations.
Work_mem to Higher value will
16MB-128MB, Default 4MB in(l:greas;l m‘;m";' Yes- work_mem should
hash_mem_multiplier needs to be Y be set higher if the
pga_aggregate_t |work_mem/hash_ . . usage, be aware of . .
< o between 2-8 especially for changed in No 2 workload is performing a
arget mem_multiplier . < concurrent sessions
workloads doing Production . lot of sorts, hash
performing huge sorts, .
many/large hash workload s operations.
. hash joins.
operations
1/0. Default value can Yes-WAL Records are
On very busy, high-core " be too low for a busy flushed from WAL
X R Default is approx . i
machines it can be useful OLTP system as this Buffers to Disk not only
log_buffers wal_buffers = - < 1% of Yes e - : f
to raise this to 64 MB - shared IBliffers will increase commits. during transaction
128MB - Higher value will commit but also when
reduce commit latency. | WAL buffers get filled.

Tips:-Oracle DBs with Large SGA and/or low Buffer Cache hit ratio will benefit
with higher values for shared_buffers. Write intensive workloads will

benefit with larger log_buffers

£Y Google Cloud

Configure Checkpointing Parameters

Oracle Postares Recommended Comment Needs Restart in Effect on System Recommended to
9 Values in CloudSQL CloudSQL Resources modify in Postgres
By default
checkpoint_timeout is 5 In a busv brod
mins and max_wal_size syst(-):(r: 1/O. Lower value will
is 1.5GB in CloudSQL MAX_WAL_SIZE |ncreasevcheckpc?|nt Yes. Set it to a value
g and AlloyDB ; frequencies causing g
log_checkpoint_i ; ; ; can be increased such that checkpoints
max_wal_size So a checkpoint will No more |/O. Too much
nterval - = ; to 5-30GB so : happen every 2-5
happen either every 5 . higher value (> 30 GB) :
» that checkpoints g minutes.
minutes or when 1.5GB may increase database
do not happen e
of WAL that frequentl recoverability time.
Records/segments are q y-
generated
Set
checkpoint_co
. s . mpletion_target .
Iog_cil::::l;:tmnt_t SHBEKpBIAE. HBEE 5-8 minutes (default is 5 1.000'16 ovenly N& /0. No. Default of 5 minutes

min).

spread the 10s
between 2
checkpoints.

is good enough

log_checkpoints
_to_alert

log_checkpoints

On

Log checkpoint
messages to
Postgres log

No (dynamic)

More disk space usage.

No. Turn it off only when
disk space is becoming
an issue due to
excessive untuned
checkpoints

£Y Google Cloud

Tips:-max_wal_size should be configured properly to reduce checkpoint frequency.

Configure I/0 Parameters

Oracle

Postgres

Recommended
Values in
CloudSQL

Comment

Needs Restart in
CloudsQL

Effect on System
Resources

Recommended to
modify in Postgres

commit_write/com

mit_wait

commit_delay

improve group commit
throughput by allowing
a larger number of
transactions to commit
via a single WAL flush.
If Oracle uses Batch
commit then setting

Change it only
when Source
Oracle uses
Batch commit
and/or Nowait
option.Useful for

No (Dynamic)

1/0. If set then
reasonable values are
200 to 1000

No. Do not change it
until and unless
absolutely necessary.

db_file_multiblock_

read_count

Seq_page_cost,
random_page_cost

. Batch
commit delayto operations/Batc
5000-1000 can be &
h Load
useful.
If

If MBRC is higher then
set seq_page_cost to
lower value (0.5-1.0) or
increase
random_page_cost
(2.0-4.0)

db_file_muiltiblo
ck_read_count
is high then
increasing
random_page_c
ost (default is 4)
relative to
seq_page_cost(
default 1) will
make optimizer
prefer Full Table
scans

Do not set
random_page_cost <
seq_page_cost until and
unless most of the
indexes can fit in the
buffer cache.

Yes. random_page_cost
of 1.1 recommended for
production workloads
using SSDs.

disk_asynch_ioffile
systemio_options

effective_io_concurr
ency

If disk_asynch_io is set
to True or
filesystemio_options
set to SETALL or
ASYNC set
effective_io_concurren
cy to a higher value for
the database

Check Source
aio-nr and
aio-max-nr

kernel settings

and set
effective_io_con
currency to
500-1000.Effect

s bitmap heap

scans

Cannot be set at
Instance level. Set at
Database level

1/0. Do not set > 500.
200-500 is good enough
if this needs to be set.

No. Set it only when the
execution of parallel
bitmap scans is slow.

£Y Google Cloud

Tips:- random_page_cost should not be more than 1.5x times than seq_page_cost for small
random reads workloads.

Configure Database Access Path Parameters

Needs
Recommended < Effect on System Recommended to
Oracle Postgres Values in CloudSQL Comment Restart in Resources modify in Postgres
CloudsQL 9
If Oracle’s Reducin
optimizer_index_cost_a 9 Yes. It should not be
i random_page_cost 1/0. Smaller values are X
s < dj is lower (towards 1) . 2 : altered unless you're
optimizer_index_ . (default is 4) relative to recommended if R .
. random_page_cost then the planner will No . " using special storage
cost_adj % seq_page_cost(default workload is typically ;
prefer index scans. Set i e (SSDs, high end SANs,
1) will make optimizer small random reads.
random_page_cost to rsfarindexscans etc.)
1.1 if SSDs are used. P
No effect. It just tells the
y " PostgreSQL que!
a higher value makes it 9 QL query
& § planner how much RAM
more likely index scans . R
; " o is estimated to be
will be used, a lower |Set it to higher value to ; A
) i available for caching
value makes it more favor index scans and ;
ez < i 2 : data, in both
optimizer_index_ . . likely sequential scans if .
= effective_cache_size " _ : . No shared_buffers and in Yes.
caching will be used. If optimizer_index_cachi
_— . . . i the filesystem cache.
optimizer_index_cachin ng is set to higher p il
’ This setting just helps
g is close to 100, set value.
" A the planner make good
effective_cache_size to < :
a hi_her vaij e cost estimates; it does
9 ’ not actually allocate the
memory.
od If
. db_file_multiblock_rea
If MBRC is higher then o PN o Do not set
d_count is high then
set seq_page_cost to . % random_page_cost < | Yes. random_page_cost
. increasing <
db_file_multibloc | Seq_page_cost, lower value (0.5-1.0) or seq_page_cost until and | of 1.1 recommended for
random_page_cost No

k_read_count

random_page_cost

increase
random_page_cost
[2.0-4.0)

(default is 4) relative to
seq_page_cost(default
1) will make optimizer
prefer Full Table scans

unless most of the
indexes can fit in the
buffer cache.

production workloads
using SSDs.

£Y Google Cloud

Tips:- effective_cache_size is often an ignored parameter in Postgres. Set it to higher value

to make use of FS Cache.

Configure Parallelism Parameters

Oracle

Postgres

Recommended Values
in CloudSQL

Comment

Needs Restart
in CloudSQL

Effect on System
Resources

Recommended to
modify in Postgres

parallel_max_serv
ers

Max_parallel_work
ers.
Related-max_paral
lel_workers_per_g
ather,
max_parallel_main
tenance_workers

Max_parallel_workers can
be set to the number of
vCPUs for workloads using
high parallel queries

Set
max_parallel_wo
rkers_per_gather

to
max_parallel_wo
rkers/2

No

CPU. Do not set more

than the number of
vCPUs

Yes. If workload is doing
large sequential
reads,parallel queries
then higher value will
improve
performance.Setting
max_parallel_maintenan
ce_workers higher
during large index builds
and Vacuum on large
tables.

£Y Google Cloud

Tips:-max_parallel_workers if configured properly is a champion setting for parallel execution
in Postgres.

Configure Performance related other Parameters

Recommended Values

Needs Restart in

Effect on System

Recommended to

Oracle Postgres Comment
9 in CloudsSQL CloudSQL Resources modify in Postgres
In Oracle
rocesses
Max_worker_processes- & CPU and memory.
control both
controls the background max_worker_processes
foreground =
processes, can be set to >=
— (user) and _| Yes. If you need more
Max_worker_proc 2*vCPUs, max_parallel_workers<=
’ background than 200 concurrent
proc and max_connections controls Yes #vCPUs. :
. processes. For X connections, make use
max_connections | max number of concurrent max_connections must g :
postgres of connection pooling

connections. (> 300
recommended to use
Connection pooling)

max_worker_pr
ocesses control
background
processes

be set to 1.5x times the
concurrent sessions you
expect at peak load.

cursor_sharing

plan_cache_mode

If cursor_sharing=EXACT,
plan_cache_mode=force__
custom_plan. If
cursor_sharing=FORCE,
then
plan_cache_mode=force__
generic_plan

This flag is not
modifiable at
Instance level,
can be set at
database and/or
session level

Dynamic- can be set
at session level

No. Recommended to
change only at
session/database level if
there are plan changes
for sql for different bind
variable values.

dml_locks

max_locks_per_tr
ansaction

The default value of 64
may not be sufficient. If
dml_locks is high in
source (default is four
tables referenced for each
transaction) then increase
max_locks_per_transactio
n

£Y Google Cloud

If transaction
touches many
tables in single
transaction, or

touch large

partitioned
tables then set
the value higher

Yes

Can be set to the
number of partitions of
the largest partitioned

table.

No. Set it only when
queries on large
partitioned tables are
slow and wait on LW
Locks.

Tips:-max_worker_processes control the background processes in Postgres. max_connections
control the sessions established. For huge concurrent connections configure pgBouncer or

HAProxy which will also help to distribute load between Read Replicas.

Checkpoints, Commits
and Performance

Google Cloud

Checkpointing and Commit in PostgreSQL-A little more..

e Checkpoints are determined by 2 parameters- CHECKPOINT TIMEOUT and MAX WAL _SIZE

e A checkpoint is begun every checkpoint_timeout seconds, or if max_wal_size is about to be exceeded,
whichever comes first. The default settings are 5 minutes and 1 GB, respectively.

e [f no WAL has been written since the previous checkpoint, new checkpoints will be skipped even if
checkpoint_timeout has passed.

e Reducing checkpoint_timeout and/or max_wal_size causes checkpoints to occur more often. This allows
faster after-crash recovery, since less work will need to be redone. However, one must balance this
against the increased cost of flushing dirty data pages more often

e Usually in a busy prod system MAX_ WAL _SIZE should be increased to 4-10GB (and sometimes to 30GB)
so that checkpoints do not happen that frequently. Ideally make checkpoints happen every 3-5
minutes.

max_wal_size will need to be changed in production workload. 5GB is a good starting point.
You can also use the redo generation/sec in source Oracle DB to more accurately configure

D Goog|e Cloud the max_wal_size.

Checkpointing in PostgreSQL

) During checkpoint the CKPT process will flush/write dirty buffers/modified data and index pages from Buffer cache to Disk (Data files).
Postgres will try to finish the checkpoint based on checkpoint_completion_target (default 0.9). Setting this to a higher value will
evenly spread the IOs between 2 checkpoints.

) The Background Writer (BGWriter) also periodically flushes dirty pages from buffer cache to disk on a regular interval with sleeping
time between 2 activities determined by bgwriter_delay (200ms default) and maximum number of LRU/Dirty pages to flush every
round is determined by bgwriter_Iru_maxpages (default 100 pages)

e So Background writer flushes no more than 100 dirty pages per round and sleeps for 200ms between every round (this is independent
of the CKPT process which flushes dirty pages during checkpoint). You can edit this parameter to make bgwriter flushes more

aggressive so that checkpoints have less work to do.
bgwriter lru maxpages

demo=> show bgwriter lru maxpages;
bgwriter l1ru maxpages

(1 row)

(1 row)

demo=> show bgwriter delay:’;
bgwriter delay

postgres=> show bgwriter delay;
bgwriter delay

(1 row)
(1 row)

Default

postgres=> show max wal size;
max_wal size

Optimized- BGWr doing during a checkpoint is spread over a period of time determined by
more work checkpoint_completion_target. Do not set it more than 0.9

To avoid flooding the I/O system with a burst of page writes, writing dirty buffers

£Y Google Cloud

Commit in PostgreSQL

WAL Writes- Backend processes write WAL records from WAL Buffers to File System buffer cache.

WAL Flush- The WAL Records gets flushed/written to WAL Segments on Disk.

Commit-> WAL Writes + WAL Flush (synchronous_commit)

With async commit, the WAL Writer flushes the WAL records and NOT the Backend processes

WAL Record Inserts (local): WAL records are first created in WAL buffers(XLoglnsertRecord). Since multiple
backend processes will be creating the WAL records at a time, it is properly protected by locks. The writing of
WAL records in wal_buffers gets continuously written/flushed(XLogFlush) to WAL segments by different
backend processes(WAL Writes). If the sychronous_commit is completely off, the flush won't be happening
immediately but relies on wal_writer_delay settings

How much data we lose if we opt for full asynchronous commit (synchronous_commit = off)

The answer is slightly complex, and it depends on wal_writer_delay settings. By default it is 200ms. That means
WALs will be flushed in every wal_writer_delay to disk. The WAL writer periodically wakes up and calls
XLogBackgroundFlush(). This checks for completely filled WAL pages. If they are available, it writes all the
buffers up to that point

commit_delay-Sets the delay in microseconds between transaction commit and flushing WAL to disk

Increase wal_buffers if your workload is write-heavy and you see “WAL buffering” wait event.

£Y Google Cloud

Commit in PostgreSQL

e Flushes WAL Records from WAL Buffers (3% of shared_buffers) to WAL Files/Segments on disk
(wal_segment_size=16MB) . If a transaction is too large and exceeds WAL Records > wal_buffer_size even
uncommitted changes will get flushed to WAL Segments on disk. But during applying WAL Records to data files
during crash/instance recovery only committed records since last checkpoint will get applied (the CLOG records
help to identify committed transactions)

e PG 17-Increased the WAL segment size from 16MB to 64MB. This enhancement has resulted in a 10%-20%
performance improvement with various workloads.

e So WAL Records are flushed from WAL Buffers to Disk not only during transaction commit but also when
WAL buffers get filled.

e Every Checkpoint maintains a Checkpoint record in WAL Segments so that the WAL Records prior to the
checkpoint record can be reused/deleted when WAL segments need to be overwritten. Also Archiving will need
to archive only completely filled WAL Segments before they get overwritten/recycled. But WAL Segments can be
switched without getting full either by setting archive_timeout or pg_switch_wal.

Higher value of wal_segment_size makes log switches and archiving less aggressive

£Y Google Cloud

Reduce Query Planning
Time

Google Cloud

PLAN_CACHE_MODE

Use Case- Complex queries,with lot of parameterized values ,on tables with uniform data distribution
PLAN_CACHE_MODE= AUTO (Custom Plan)- Custom plans are made afresh for each execution using its specific set of
parameter values
Generic plans do not rely on the parameter values and can be re-used across executions.
Use of a generic plan saves planning time, but if the ideal plan depends strongly on the parameter values then a generic plan
may be inefficient.
e Uniform data distribution and different bind variable values- Generic plan is always better
e Example (query with different parameter values passed/exec and plan_cache_mode=auto)
Buffers: shared hit=17896
Planning Time: 35.451 ms
Execution Time: 1.887 ms
e Setit for a particular user

alter user test_user set plan_cache_mode to force_generic_plan;
select * from pg_user where usename = 'test_user’;

usename | usesysid | usecreatedb | usesuper | userepl | usebypassrls | passwd | valuntil | useconfig
——————————— e e e e e e
test_user| 429868 |t [f [f |f | ¥xxxxxxk | NULL | {"search_path=\"$user\", public,

oracle",pgaudit.log=all,plan_cache_mode=force_generic_plan}

£Y Google Cloud

SET SESSION plan_cache_mode=force_generic_plan;

PREPARE my_query(integer, varchar, varchar, varchar, timestamp, integer) AS

SELECT

COALESCE(COUNT(DISTINCT exltspling.spl.pax.splpax..sed.cda), 0) AS levelclasifydoss
FROM exltspling.spl tramos

INNER JOIN exltspling.spl. vuglos

ON DATE_TRUNC('day', exltspline.spl.tramos.vlos..fch) = DATE_TRUNC('day', exltspling.spl.vuelos.vlos.fch)
AND exltspline.sel.tramosvios..nmr = exltspline.sel.vuglos.vlos. nmr

AND exltspling,spl_tramos.vlos_cda. carrier = exltsrline.splvuelos.vlos_cda. carrier
INNER JOIN exltspling.spl_tramos. pax

ON extspling.spl_tramos.pax.srltrm..sed.cdg = exltspline.spl_tramos.spltrm..sed.cdg
INNER JOIN exltspling.spl_pax

ON exltspling.splpax.splpax_sed.cdg = exltspline.spltramos._pax.spipaX..sed..cdg
INNER JOIN exltspling.spl_clasificaciones. goss

ON exltspline.spl_clasificaciones_aoss.splpax..sed.cdd = exltspling.splpax.splpax..sed. cdg
AND exltspline.spl_clasificaciones._doss.splcsa_est.reconocido =1

AND exltspline.spl clasificaciones. goss.spicsg..tre = 'G'

WHERE

exltspling.spl_vuelos.vlos. nmr = $1

AND exltspline.spl.vuelos.vlos. cda._carrier = $2

AND exltspline,spl_tramos,arpr. cdg_origen = $3

AND exltspline. sl tramos,arpr..cdg. desting = $4

AND exltspline.spl.vuglos.vlos, fch = $5

AND exltspline. sel.tramos.seltrm..sed..cdd = $6;

EXPLAIN (analyze, verbose, costs, settings, buffers, al, timing, summary, format text) EXECUTE my_query(3, ‘LA, 'SCL, 'GRU', DATE_TRUNC('day''2024-07-3100:00:00.0"::timestamp),
é:ﬁfilaljj(;analyze, verbose, costs, settings, buffers, wal, timing, summary, format text) EXECUTE my_query(841,LA}'SCL, 'GRU', DATE_TRUNC('day’,"2024-07-3100:00:00.0"::timestamp),
:ggf:sf)(;nulyze, verbose, costs, settings, buffers, ygl, timing, summary, format text) EXECUTE my_query(7, 'LA', 'SCL', 'GRU', DATE_TRUNC('day''2024-07-31 00:00:00.0':timestamp),
éggizmmalyze, verbose, costs, settings, buffers, wal, timing, summary, format text) EXECUTE my_query(883,LA}'SCL', 'GRU', DATE_TRUNC('day’,"2024-07-3100:00:00.0"::timestamp),
:ggf:m;nalyze, verbose, costs, settings, buffers, wal, timing, summary, format text) EXECUTE my_query(901,LA}'SCL', 'GRU', DATE_TRUNC('day2024-07-3100:00:00.0"::timestamp),
4069367);

DEALLOCATE my_query;
First entry of values get:
Buffers: shared hit=17896

Planning Time: 31.447 ms
Execution Time: 2.366 ms

Subseauentioh:

Planning Time: 0.053 ms
Execution Time: 0.708 ms

Added 31 combinations of values to the above list and the parameter reduces / eliminates the planing time after first 2 executions:

First values:

Buffers: shared hit=17896
Planning Time: 33.671 ms
Execution Time: 2.828 ms

Second:
Planning Time: 0.064 ms
Execution Time: 1.212 ms

Third:
Execution Time: 1.121 ms

15th:
Execution Time: 0.548 ms

£Y Google Cloud

Better Join Methods and
Join Orders

Google Cloud

Join_collapse_limit and GEQO

Use Case: Queries joining many tables suffering from bad execution plan due to suboptimal join orders.
Performance Issues when joining many large tables (and in most cases they are partitioned tables) in PostgreSQL ,
a quick thing to try out is to change join_collapse_limit from its default 8 to higher value (can set as high as 20 on
faster and more CPUs machine).

e This gives the PostgreSQL Optimizer better Join orders to choose from and in turn better join types.

e The traditional problem with higher values of join_collapse_limit has been higher query planning time (to
determine best join order for N tables takes an O(N!) factorial approach).

e But with newer versions of PostgreSQL the planning time to evaluate more join orders have been greatly
reduced because join plans are now developed using the genetic approach (GEQO).

e Setting join_collapse_limit = 20 reduced query execution times (on many large partitioned tables) by more than
10x (for one of them it was reduced to < 1 second from 8 minutes!).

e The genetic query optimizer (GEQO) is an algorithm that does query planning using heuristic searching. This
reduces planning time for complex queries (those joining many relations), at the cost of producing plans that
are sometimes inferior to those found by the normal exhaustive-search algorithm

e Geqo_threshold- Sets the threshold of FROM items beyond which GEQO is used. The default is 12.

e For simpler queries it is usually best to use the regular, exhaustive-search planner, but for queries with many
tables the exhaustive search takes too long.

e Set geqo_threshold to 16 or 18 with better and faster Machine types now.

£Y Google Cloud

join__collapse_ limit (result in 8 min)

5 issue(+) 1 i3 Execution plan - 2

Node Type

~ Hash Join
~ Nested Loop
~ Hash Join
~ Hash Join
~ Parallel Hash Join
~ Merge J.
~ Merge Join
Merge Join
Sort
~ sort
Seq Scan
~ Parallel Hash
Parallel Seq Scan
~ Hash
Seq Scan
~ Hash

Index Scan
Index Only Scan

3 Execution plan - 3

Entity

divert_issue

claim_issue

spq_issue

vehicle
product_instance

manufacturing_pro.

After setting join_ collapse limit =40 (result in 1

Execution plan - 2 >
Node Type
2 ~ sort
~ Nested Loop
~ Hash Join
Seq Scan
~ Hash
~ Nested Loop
~ Nested Loop
~ Nested Loop
~ Hash Join
Seq Scan
~ Hash

Nested Loop

Index Scan
Index Scan
Index Scan
Index Scan

show geqgo

test=> show gego_threshold;
gego_threshold

Entity

fq_issue

Cost
7418968.45 -
7186325.92 -
7185325.92 -
7184979.09 -
7184978.66 -
7184975.87 -
7184457.87 -
6124591.57 -
6041307.29 -
6041305.41 -
1.87 - 1.94

83284.28 - 84

0.00 - 28212.23 575623

1026180.02 -

0.00 - 206.37

sec)

divert_issue

cqi_issue

epqgr_issue

Google Cloud

Rows Time

3
©
e
@
®
W
o

11237

Cost

70327.90 - 70...
31433.53 - 70.
31433.24 - 70.
0.00 - 36054.26
31433.19 - 31...
339.63 - 3143...
339.49 - 3143...
339.06 - 3143...
338.64 - 3142...
0.00 - 28212.23
338.59 - 338.59
7.59 - 338.59
0.42 - 0.44
0.43 - 0.45
0.14 - 0.16
0.29 - 0.31

567672

1

clololofalaln]ala|afa
N

5623

Condition

(productinsi_id = (|

(issueO_product_ins

Time
332.273
332.253
332.207
45.472
168.572
168.562
168.541
168.520
168.459
42.089
4.370
4.365
0.046
0.009
0.012
0.029

Condition

((issueO_1_.

((issueO_8_.id):numer

(((issue0_2_.approved
(issueO_5_.id = issueC
(issueO_3_.id = issueC
(issueO_14_.id issue
(issueO_10_.id = issue

Optimized-join_
collapse_limit

Optimize Queries on
Partitioned Tables

Google Cloud

max_locks_per_transaction

Use Case:- Queries on large partitioned tables slow due to lock contention

If transaction touches many tables in single transaction, or touches large partitioned tables then set the
value higher than the default value of 64

Set it to the number of partitions of the largest partitioned table multiplied by the number of such

partitioned tables a single transaction is going to touch

> % 2024-89-09 09:36:42.856 v4gn postgres_internal
2024-89-09 16:36:42.856 UTC [3838]: [342-1] db=,user= WARNING: [postmaster.c:4202] server process (PID 256825) exited with exit code 1

> @ 2024-69-09 09:36:42.849 v4qn
2024-89-09 16:36:42.849 UTC [256825]: [2-1] db=dbairpdm,user=dbairpdm FATAL: [postgres.c:3446] connection to client lost
> i 2024-89-89 09:36:42.849 vaqgn
2024-89-09 16:36:42.849 UTC [256825]: [1-1] db=dbairpdm,user=dbairpdm LOG: [pqcomm.c:1398] could not send data to client: Broken pipe

> % 2024-89-69 09:36:42.811 v4gn postgres_internal
2024-89-09 16:36:42.811 UTC [8605]: [5377-1] db=,user= LOG: [lwlock.c:2167] LUX_LWLOCK_DIAG: No space for adding more locks. Locks held by PID 8685: 256, max:
256

> % 2024-89-09 09:36:42.811 v4gn postgres_internal
2024-89-09 16:36:42.811 UTC [8605]: [5376-1] db=,user= LOG: [lwlock.c:2167] LUX_LWLOCK_DIAG: No space for adding more locks. Locks held by PID 8685: 256, max:
256

> % 2024-09-69 09:36:42.811 v4qn postgres_internal

2024-89-09 16:36:42.811 UTC [8605]: [5375-1] db=,user= LOG: [lwlock.c:2167] LUX_LWLOCK_DIAG: No space for adding more locks. Locks held by PID 8685: 256, max:
256

> % 2024-89-69 09:36:42.811 v4gqn postgres_internal
2024-89-09 16:36:42.811 UTC [8605]: [5374-1] db=,user= LOG: [lwlock.c:2167] LUX_LWLOCK_DIAG: No space for adding more locks. Locks held by PID 8605: 256, max:
256

> % 2024-89-09 09:36:42.811 v4gn postgres_internal
2024-89-09 16:36:42.811 UTC [8605]: [5373-1] db=,user= LOG: [lwlock.c:2167] LUX_LWLOCK_DIAG: No space for adding more locks. Locks held by PID 8685: 256, max:
256

Best Practices in Partitioning

Choose the right partition size.

Keep your partition size consistent.

Choose the right partitioning key- Opt for a key that aligns with your query patterns. For instance, if most of your queries filter by date, a timestamp or date
column would be an ideal partitioning key.

Create partitions in advance.

Take advantage of data retention policies to maintain old partitions. For example, if you're partitioning by time and data has a limited useful life, schedule regular
tasks to drop or archive old partitions.

Inefficient indexing-Avoid creating unnecessary indexes on your partitions. Only index the columns that are frequently filtered or joined on.

Unoptimized query pattern- Queries spanning multiple partitions or not using the partition key in the WHERE clause might suffer in performance. Ensure that the
majority of your queries are optimized for the partitioning scheme.

Partition-wise Join- Combining partitions that have the same range and values eliminates unnecessary JOIN processing, thus improving performance. Each
partition pair is joined by a "Nested Loop" and the results are summarised at the end. Without Partition wise join, scanning results of partitions in the table are
obtained separately and the join process is performed at the end

Partition-wise Aggregate- Processing time can be shortened by performing aggregation for each partition.

demo=—> show enable partitionwise joing;’
enable partitionwise join

(1L rrow)

demo=—> show enable partitionwise aggregater:;
enable partitionwise aggregate

(1L rrow)

som=> show enable partitionwise_join;
enable partitionwise join

(34

(1 row)

som=> explain(analyze,buffers) select * from prtl tl, prt2 t2 where tl.a = t2.b and tl1.b = 0 and t2.b between 0 and 10000;
QUERY PLAN

Hash Join (cost=29948.08..164867.51 rows=1263271 width=24) (actual time=158.228..158.318 rows=0 loops=1)
Hash Cond: (t2.b = tl.a)
Buffers: shared hit=14171
-> Append (cost=0.00..106558.08 rows=4194304 width=12) (actual time=0.007..0.009 rows=1 loops=1)
Buffers: shared hit=l
-> Seq Scan on prt2 pl t2 1 (cost=0.00..64189.92 rows=3145728 width=12) (actual time=0.007..0.007 rows=1 loops=1)
Filter: ((b >= 0) AND (b <= 10000))
Buffers: shared hit=1
-> Seq Scan on prt2 p2 t2 2 (cost=0.00..21396.64 rows=1048576 width=12) (never executed)
Filter: ((b >= 0) AND (b <= 10000))
-> Hash (cost=29948.04..29948.04 rows=3 width=12) (actual time=158.216..158.304 rows=0 loops=1)
Buckets: 1024 Batches: 1 Memory Usage: 8kB
Buffers: shared hit=14170
-> Gather (cost=1000.00..29948.04 rows=3 width=12) (actual time=158.216..158.303 rows=0 loops=1)
Workers Planned: 2
Workers Launched: 2
Buffers: shared hit=14170
-> Parallel Append (cost=0.00..28947.74 rows=3 width=12) (actual time=148.737..148.738 rows=0 loops=3)
Buffers: shared hit=14170
-> Parallel Seq Scan on prtl pl t1 1 (cost=0.00..11129.33 rows=1 width=12) (actual time=65.807..65.807 rows=0 loops=3)
Filter: (b = 0)
Rows Removed by Filter: 349525
Buffers: shared hit=5668
-> Parallel Seq Scan on prtl p2 t1 2 (cost=0.00..11129.33 rows=1 width=12) (actual time=87.599..87.599 rows=0 loops=2)
Filter: (b =0)
Rows Removed by Filter: 524288
Buffers: shared hit=5668
-> Parallel Seq Scan on prtl p3 tl1 3 (cost=0.00..6689.06 rows=1 width=12) (actual time=73.582..73.582 rows=0 loops=1)
Filter: (b = 0)
Rows Removed by Filter: 524288
Buffers: shared hit=2834
Planning:
Buffers: shared hit=72
Planning Time: 0.258 ms
Execution Time: 158.404 ms
(35 rows)

¢ Google Cloud

som=> set enable partitionwise join=on;
SET

som=> show enable partitionwise_join;
enable partitionwise join

on

(1 row)

som=> explain(analyze,buffers) select * from prtl tl1, prt2 t2 where tl.a = t2.b and tl.b = 0 and t2.b between 0 and 10000;
QUERY PLAN

Append (cost=18775.21..154652.64 rows=1052468 width=24) (actual time=94.372..94.377 rows=0 loops=1)
Buffers: shared hit=11338
-> Hash Join (cost=18775.21..100036.42 rows=527481 width=24) (actual time=46.756..46.759 rows=0 loops=1)
Hash Cond: (t2 1.b =tl l.a)
Buffers: shared hit=5669
-> Seq Scan on prt2 pl t2 1 (cost=0.00..64189.92 rows=3145728 width=12) (actual time=0.008..0.008 rows=1 loops=1)
Filter: ((b >= 0) AND (b <= 10000))
Buffers: shared hit=1
-> Hash (cost=18775.20..18775.20 rows=1 width=12) (actual time=46.735..46.737 rows=0 loops=1)
Buckets: 1024 Batches: 1 Memory Usage: 8kB
Buffers: shared hit=5668
-> Seq Scan on prtl pl t1 1 (cost=0.00..18775.20 rows=1 width=12) (actual time=46.734..46.735 rows=0 loops=1)
Filter: (b = 0)
Rows Removed by Filter: 1048576
Buffers: shared hit=5668
Hash Join (cost=18775.21..49353.88 rows=524987 width=24) (actual time=47.613..47.615 rows=0 loops=1)
Hash Cond: (t2 2.b = tl 2.a)
Buffers: shared hit=5669
-> Seq Scan on prt2 p2 t2 2 (cost=0.00..21396.64 rows=1048576 width=12) (actual time=0.011..0.011 rows=1 loops=1)
Filter: ((b >= 0) AND (b <= 10000))
Buffers: shared hit=1
-> Hash (cost=18775.20..18775.20 rows=1 width=12) (actual time=47.595..47.595 rows=0 loops=1)
Buckets: 1024 Batches: 1 Memory Usage: 8kB
Buffers: shared hit=5668
-> Seq Scan on prtl p2 t1 2 (cost=0.00..18775.20 rows=1 width=12) (actual time=47.594..47.594 rows=0 loops=1)
Filter: (b = 0)
Rows Removed by Filter: 1048576
Buffers: shared hit=5668
Planning Time: 0.159 ms
Execution Time: 94.409 ms
(30 rows)

v

Optimize Parallel Queries

¢ Google Cloud

Parameters

Use Case:- Bad performance on parallel queries

Serial | Parameter Default Remarks
#
1 Max_worker_processes 8 Irrespective of

Instance type

2 Max_parallel_workers 8 Irrespective of
Instance type

3 Max_parallel_workers_per_gather 2 Irrespective of
Instance type

4 Max_parallel_maintenance_workers | 2 Irrespective of
Instance type

e Too much Parallelism- Good or Bad?

Gather (cost=60140.09..209462.74 rows=1 width=12) (actual time=21.388..22.079 rows=0 loops=1)
Output: spl tramos pax.spltrm seq cdg, spl pax.splpax seq cdg
Workers Planned: 7
Workers Launched: 7

a

Parameters

Database load distribution by { Wait events v J for specific query

A measure of the work (in CPU-seconds) that your selected normalized query has performed in your selected database over
time. Learn more [£

300ms
a
200ms
100ms
———“""—:’-——-‘f.
T a» 1 I 0
uTC-4 9:40 AM 9:50 AM 10:00 AM 10:10 AM 10:20 AM
=—=@® BgWorkerShutdown: 0.23ms =M BtreePage: 0.17ms =¥ ClientWrite: 0
=@ CPU: 28.37ms =4 DSMFillZeroWrite: 10.06ms ~—® ExecuteGather: 183.28ms

e Parallel query on too many tables and tables with hundreds of partition may not perform well if Partition-wise
join, partition-wise aggregates do not happen. The final Gather operation will be detrimental to performance.

al

Full Index Scans? Vacuum?

Google Cloud

Visibility Map and Vacuuming

Use Case:- Performance Issues with Index Only Scan
Index Only Scan does not always eliminates Heap fetches, why?
Index Only Scan can be slower than Index Scan at times, why?

Example:-

Index Only Scan using som_pkey on som (actual time=0.019..0.147 rows=999 loops=1)
Index Cond: (id < 1000)

Heap Fetches: 186

Planning Time: 0.189 ms

Execution Time: 0.283 ms

Why Heap Fetches?
This is because the visibility map(VM) is outdated, PostgreSQL can't rely on it to determine tuple visibility and this forces the
database to check the heap directly, even during an Index Only Scan.

In the above example, only 1 row was updated which made page O and page 5408 ‘all_visible' flag to be set to 'f'. (Page 5408
contains the updated version of the tuple and page O contains the dead/old version)

select count(*) from pg_visibility_map(‘'som') where all_visible='f';
count

Visibility Map and Vacuuming

SELECT * FROM pg_visibility_map('som'’);
blkno | all_visible | all_frozen

_______ e
olf |If
1t |If
2|t |f

SELECT * FROM pg_visibility_map('som’) where blkno=5408;
blkno | all_visible | all_frozen

_______ O S
5408 |f |f

oratest=> select count(*) from pg_visibility_map('som’) where all_visible="t’;
count

5407

Why Heap Fetches: 186- Page O has 185 rows and Page 5408 has 1 row
select ctid, * from som;

(0,184) | 184 | 0.4253149976251245

(0,185) | 185 0.7433661580552404

(1,1) | 186 | 0.40145769235950435

This can become a problem if your production tables have lot of changes and VACUUM or AUTOVACUUM does not run regularly. This will make the VM outdated
and INDEX ONLY SCANSs have to do heap fetches for all the pages that have all_visible=f and scan the rows in those pages to find out whether it is
visible to the transaction.

So AutoVacuum/Vacuum does another important job (apart from cleaning dead tuples, preventing transaction ID Wraparound) of updating the
Visibility Map to make Index Only scan faster.

Basic Housekeeping

Google Cloud

»w

O 00 g O O

10.

Let’s Do the Basics Right

Vacuum Regularly.

Autovacuum- Adjust autovacuum_vacuum_scale_factor, autovacuum_vacuum_cost_limit,
autovacuum_vacuum_cost_delay for large tables that changes frequently

Analyze regularly.

Set deafult_statistics_target higher and analyze- can be set for the table or individual
columns. Important for skewed columns.

Column Statistics, Extended Statistics/Multivariate statistics.

Indexes- Index what you need. Not too many.

Correct Index types.

Log_min_duration_statement, log_statement,log_line_prefix

Connection Pooler

Performance Monitoring in Place.

EMEA Database Community

%/ Join Here

Webinars E& Fireside Chats ¢ Special Events &: Tech Workshops X Roadmap Reveals
Monthly Newsletter =/

[|
Google Cloud

