
PostgreSQL
Advance Performance Tuning

Somdyuti Paul (Som)
Google, EMEA DataManagement Specialist

Contents
● Database Flags - Migrating from Oracle?
● Checkpoints, Commits and Performance
● Reduce Query Planning Time
● Optimize Join Methods and Join Orders
● Optimize Queries on Partitioned Tables
● Optimize Parallel Queries
● A Strange Use Case on Full Index Scan
● Basic Performance Housekeeping

Parameters/Flags

Tips:-Oracle DBs with Large SGA and/or low Buffer Cache hit ratio will benefit
with higher values for shared_buffers. Write intensive workloads will
benefit with larger log_buffers

+

Configure Memory Related Parameters

Tips:-max_wal_size should be configured properly to reduce checkpoint frequency.

+

Configure Checkpointing Parameters

Tips:- random_page_cost should not be more than 1.5x times than seq_page_cost for small
random reads workloads.

Configure I/O Parameters

Tips:- effective_cache_size is often an ignored parameter in Postgres. Set it to higher value
to make use of FS Cache.

+

Configure Database Access Path Parameters

Tips:-max_parallel_workers if configured properly is a champion setting for parallel execution
in Postgres.

Configure Parallelism Parameters

Tips:-max_worker_processes control the background processes in Postgres. max_connections
control the sessions established. For huge concurrent connections configure pgBouncer or
HAProxy which will also help to distribute load between Read Replicas.

+

Configure Performance related other Parameters

Checkpoints, Commits
and Performance

● Checkpoints are determined by 2 parameters- CHECKPOINT_TIMEOUT and MAX_WAL_SIZE
● A checkpoint is begun every checkpoint_timeout seconds, or if max_wal_size is about to be exceeded,

whichever comes first. The default settings are 5 minutes and 1 GB, respectively.
● If no WAL has been written since the previous checkpoint, new checkpoints will be skipped even if

checkpoint_timeout has passed.
● Reducing checkpoint_timeout and/or max_wal_size causes checkpoints to occur more often. This allows

faster after-crash recovery, since less work will need to be redone. However, one must balance this
against the increased cost of flushing dirty data pages more often

● Usually in a busy prod system MAX_WAL_SIZE should be increased to 4–10GB (and sometimes to 30GB)
so that checkpoints do not happen that frequently. Ideally make checkpoints happen every 3–5
minutes.

max_wal_size will need to be changed in production workload. 5GB is a good starting point.
You can also use the redo generation/sec in source Oracle DB to more accurately configure
the max_wal_size.

Checkpointing and Commit in PostgreSQL-A little more..

● During checkpoint the CKPT process will flush/write dirty buffers/modified data and index pages from Buffer cache to Disk (Data files).
Postgres will try to finish the checkpoint based on checkpoint_completion_target (default 0.9). Setting this to a higher value will
evenly spread the IOs between 2 checkpoints.

● The Background Writer (BGWriter) also periodically flushes dirty pages from buffer cache to disk on a regular interval with sleeping
time between 2 activities determined by bgwriter_delay (200ms default) and maximum number of LRU/Dirty pages to flush every
round is determined by bgwriter_lru_maxpages (default 100 pages)

● So Background writer flushes no more than 100 dirty pages per round and sleeps for 200ms between every round (this is independent
of the CKPT process which flushes dirty pages during checkpoint). You can edit this parameter to make bgwriter flushes more
aggressive so that checkpoints have less work to do.

To avoid flooding the I/O system with a burst of page writes, writing dirty buffers
during a checkpoint is spread over a period of time determined by
checkpoint_completion_target. Do not set it more than 0.9

Checkpointing in PostgreSQL

Optimized- BGWr doing
more work

Default

● WAL Writes- Backend processes write WAL records from WAL Buffers to File System buffer cache.
● WAL Flush- The WAL Records gets flushed/written to WAL Segments on Disk.
● Commit-> WAL Writes + WAL Flush (synchronous_commit)
● With async commit, the WAL Writer flushes the WAL records and NOT the Backend processes
● WAL Record Inserts (local): WAL records are first created in WAL buffers(XLogInsertRecord). Since multiple

backend processes will be creating the WAL records at a time, it is properly protected by locks. The writing of
WAL records in wal_buffers gets continuously written/flushed(XLogFlush) to WAL segments by different
backend processes(WAL Writes). If the sychronous_commit is completely off, the flush won’t be happening
immediately but relies on wal_writer_delay settings

● How much data we lose if we opt for full asynchronous commit (synchronous_commit = off)
● The answer is slightly complex, and it depends on wal_writer_delay settings. By default it is 200ms. That means

WALs will be flushed in every wal_writer_delay to disk. The WAL writer periodically wakes up and calls
XLogBackgroundFlush(). This checks for completely filled WAL pages. If they are available, it writes all the
buffers up to that point

● commit_delay-Sets the delay in microseconds between transaction commit and flushing WAL to disk

Increase wal_buffers if your workload is write-heavy and you see “WAL buffering” wait event.

Commit in PostgreSQL

● Flushes WAL Records from WAL Buffers (3% of shared_buffers) to WAL Files/Segments on disk
(wal_segment_size=16MB) . If a transaction is too large and exceeds WAL Records > wal_buffer_size even
uncommitted changes will get flushed to WAL Segments on disk. But during applying WAL Records to data files
during crash/instance recovery only committed records since last checkpoint will get applied (the CLOG records
help to identify committed transactions)

● PG 17- Increased the WAL segment size from 16MB to 64MB. This enhancement has resulted in a 10%-20%
performance improvement with various workloads.

● So WAL Records are flushed from WAL Buffers to Disk not only during transaction commit but also when
WAL buffers get filled.

● Every Checkpoint maintains a Checkpoint record in WAL Segments so that the WAL Records prior to the
checkpoint record can be reused/deleted when WAL segments need to be overwritten. Also Archiving will need
to archive only completely filled WAL Segments before they get overwritten/recycled. But WAL Segments can be
switched without getting full either by setting archive_timeout or pg_switch_wal.

Higher value of wal_segment_size makes log switches and archiving less aggressive

Commit in PostgreSQL

Reduce Query Planning
Time

● Use Case- Complex queries,with lot of parameterized values ,on tables with uniform data distribution
● PLAN_CACHE_MODE= AUTO (Custom Plan)- Custom plans are made afresh for each execution using its specific set of

parameter values
● Generic plans do not rely on the parameter values and can be re-used across executions.
● Use of a generic plan saves planning time, but if the ideal plan depends strongly on the parameter values then a generic plan

may be inefficient.
● Uniform data distribution and different bind variable values- Generic plan is always better
● Example (query with different parameter values passed/exec and plan_cache_mode=auto)

Buffers: shared hit=17896
Planning Time: 35.451 ms
Execution Time: 1.887 ms
● Set it for a particular user

alter user test_user set plan_cache_mode to force_generic_plan;
select * from pg_user where usename = 'test_user';
 usename | usesysid | usecreatedb | usesuper | userepl | usebypassrls | passwd | valuntil | useconfig
-----------+----------+-------------+----------+---------+--------------+----------+----------+-------------------------------------
 test_user | 429868 | t | f | f | f | ******** | NULL | {"search_path=\"$user\", public,
oracle",pgaudit.log=all,plan_cache_mode=force_generic_plan}

PLAN_CACHE_MODE

Better Join Methods and
Join Orders

● Use Case: Queries joining many tables suffering from bad execution plan due to suboptimal join orders.
● Performance Issues when joining many large tables (and in most cases they are partitioned tables) in PostgreSQL ,

a quick thing to try out is to change join_collapse_limit from its default 8 to higher value (can set as high as 20 on
faster and more CPUs machine).

● This gives the PostgreSQL Optimizer better Join orders to choose from and in turn better join types.
● The traditional problem with higher values of join_collapse_limit has been higher query planning time (to

determine best join order for N tables takes an O(N!) factorial approach).
● But with newer versions of PostgreSQL the planning time to evaluate more join orders have been greatly

reduced because join plans are now developed using the genetic approach (GEQO).
● Setting join_collapse_limit = 20 reduced query execution times (on many large partitioned tables) by more than

10x (for one of them it was reduced to < 1 second from 8 minutes!).
● The genetic query optimizer (GEQO) is an algorithm that does query planning using heuristic searching. This

reduces planning time for complex queries (those joining many relations), at the cost of producing plans that
are sometimes inferior to those found by the normal exhaustive-search algorithm

● Geqo_threshold- Sets the threshold of FROM items beyond which GEQO is used. The default is 12.
● For simpler queries it is usually best to use the regular, exhaustive-search planner, but for queries with many

tables the exhaustive search takes too long.
● Set geqo_threshold to 16 or 18 with better and faster Machine types now.

Join_collapse_limit and GEQO

Join_collapse_limit and GEQO

Optimized-join_
collapse_limit

Optimize Queries on
Partitioned Tables

max_locks_per_transaction
● Use Case:- Queries on large partitioned tables slow due to lock contention
● If transaction touches many tables in single transaction, or touches large partitioned tables then set the

value higher than the default value of 64
● Set it to the number of partitions of the largest partitioned table multiplied by the number of such

partitioned tables a single transaction is going to touch
● If set low, then following errors will be reported

Best Practices in Partitioning
● Choose the right partition size.
● Keep your partition size consistent.
● Choose the right partitioning key- Opt for a key that aligns with your query patterns. For instance, if most of your queries filter by date, a timestamp or date

column would be an ideal partitioning key.
● Create partitions in advance.
● Take advantage of data retention policies to maintain old partitions. For example, if you're partitioning by time and data has a limited useful life, schedule regular

tasks to drop or archive old partitions.
● Inefficient indexing-Avoid creating unnecessary indexes on your partitions. Only index the columns that are frequently filtered or joined on.
● Unoptimized query pattern- Queries spanning multiple partitions or not using the partition key in the WHERE clause might suffer in performance. Ensure that the

majority of your queries are optimized for the partitioning scheme.
● Partition-wise Join- Combining partitions that have the same range and values eliminates unnecessary JOIN processing, thus improving performance. Each

partition pair is joined by a "Nested Loop" and the results are summarised at the end. Without Partition wise join, scanning results of partitions in the table are
obtained separately and the join process is performed at the end

● Partition-wise Aggregate- Processing time can be shortened by performing aggregation for each partition.

No Partition wise Join
Partition wise Join

Optimize Parallel Queries

Parameters
Use Case:- Bad performance on parallel queries

● Too much Parallelism- Good or Bad?

Parameters

● Parallel query on too many tables and tables with hundreds of partition may not perform well if Partition-wise
join, partition-wise aggregates do not happen. The final Gather operation will be detrimental to performance.

Full Index Scans? Vacuum?

Visibility Map and Vacuuming
Use Case:- Performance Issues with Index Only Scan
Index Only Scan does not always eliminates Heap fetches, why?
Index Only Scan can be slower than Index Scan at times, why?

Example:-
Index Only Scan using som_pkey on som (actual time=0.019..0.147 rows=999 loops=1)
Index Cond: (id < 1000)
 Heap Fetches: 186
 Planning Time: 0.189 ms
 Execution Time: 0.283 ms

Why Heap Fetches?
This is because the visibility map(VM) is outdated, PostgreSQL can't rely on it to determine tuple visibility and this forces the
database to check the heap directly, even during an Index Only Scan.
In the above example, only 1 row was updated which made page 0 and page 5408 'all_visible' flag to be set to 'f'. (Page 5408
contains the updated version of the tuple and page 0 contains the dead/old version)

select count(*) from pg_visibility_map('som') where all_visible='f';
count

2

Visibility Map and Vacuuming
SELECT * FROM pg_visibility_map('som');
blkno | all_visible | all_frozen
-------+-------------+------------
 0 | f | f
 1 | t | f
 2 | t | f

SELECT * FROM pg_visibility_map('som') where blkno=5408;
 blkno | all_visible | all_frozen
-------+-------------+------------
 5408 | f | f
oratest=> select count(*) from pg_visibility_map('som') where all_visible='t';
 count

 5407
Why Heap Fetches: 186- Page 0 has 185 rows and Page 5408 has 1 row
select ctid, * from som;
(0,184) | 184 | 0.4253149976251245
 (0,185) | 185 | 0.7433661580552404
 (1,1) | 186 | 0.40145769235950435
...
This can become a problem if your production tables have lot of changes and VACUUM or AUTOVACUUM does not run regularly. This will make the VM outdated
and INDEX ONLY SCANs have to do heap fetches for all the pages that have all_visible=f and scan the rows in those pages to find out whether it is
visible to the transaction.
So AutoVacuum/Vacuum does another important job (apart from cleaning dead tuples, preventing transaction ID Wraparound) of updating the
Visibility Map to make Index Only scan faster.

Basic Housekeeping

Let’s Do the Basics Right
1. Vacuum Regularly.
2. Autovacuum- Adjust autovacuum_vacuum_scale_factor, autovacuum_vacuum_cost_limit,

autovacuum_vacuum_cost_delay for large tables that changes frequently
3. Analyze regularly.
4. Set deafult_statistics_target higher and analyze- can be set for the table or individual

columns. Important for skewed columns.
5. Column Statistics, Extended Statistics/Multivariate statistics.
6. Indexes- Index what you need. Not too many.
7. Correct Index types.
8. Log_min_duration_statement, log_statement,log_line_prefix
9. Connection Pooler

10. Performance Monitoring in Place.

EMEA Database Community
🔗 Join Here

Webinars 🎬 Fireside Chats 🔥 Special Events 🎉 Tech Workshops 🛠 Roadmap Reveals 🗺
Monthly Newsletter 📰

