
Failover and Switchover Deep
Dive with Manual Resolution
2025 David Pech

About Me

David Pech
2

Is Postgres a Distributed System?

- not quite
- "import / export"
- leader (can write) / replica (read-only)
- how to point clients to a leader?

But

- easy to resync data between replicas? (no)
- can we serve only part of dataset? (not with physical)
- multiple leaders? (sure)
- always connect to leader only? (sure - only with libpq)

3

Postgres as a Product

Linux Kernel

–

SystemD

–-

Postgres (== core)

–

Patroni, RepMgr, PG Kubernetes operator

–

Do-It-Yourself, Helm chart, "distributions" …

–

Web UI, CDC…

Linux Kernel

–

SystemD

–

Apache Kafka (without ZooKeeper now)

–

Confluent Platform, Kafka-connect, …

4

Physical Replication

- Each DB cluster has unique "Database system identifier"
- Different Instances == Clones of the same Cluster
- Replica needs to process exactly the same change data (WAL) as Leader

- Any difference => not a clone anymore, not a correctly working replica
- (You can't lose or change any WAL segment)

- Replication slot
- Just a logical concept for a Leader to track all Replica WAL positions
- Main objective = coordinate what to send to replicas + not to lose data before the replicas can

fetch them

(vs. Logical replication = completely separate PG Clusters)

5

Log Sequence Number (LSN) & Timeline

- PG instance track its current "writing position" in bytes
- (== pointer to Write Ahead Log (WAL) position)
- LSN can be used to calculate "drift" in bytes

- Timeline = each Point-In-Time-Recovery (PITR) event a new timeline is create
(+1)

- .history file is generated to track "branching"

6

Log Sequence Number (LSN) & Timeline Example

Image: https://www.interdb.jp/pg/pgsql10/03.html

7

https://www.interdb.jp/pg/pgsql10/03.html

Log Sequence Number (LSN) & Timeline DEMO

8

RPO and RTO

RPO - measured primarily in bytes (replica lag) => LSN calculations
Image: https://www.rubrik.com/insights/rto-rpo-whats-the-difference

9

https://www.rubrik.com/insights/rto-rpo-whats-the-difference

Following Examples

- pg-red - Leader
- pg-green - Replica
- pg-blue - Replica

10

pg_is_in_recovery() - on the replica side

11

pg_promote()

- If already not in recovery => Error
- Does not require PG instance restart

- removes standby.signal (typically also postgresql.auto.conf)

12

pg_demote() ?

- No such function
- Leader needs to be restarted (NO other way)

13

Who is the Leader now?

- Single source of truth is needed to make decisions
- Simple example = monitoring VM
- Real examples

- Patroni utilizes "Distributed Configuration Store" (DCS) - etcd, …
- PG operators in Kubernetes - kube-apiserver (etcd behind)
- 3 or 5 nodes are needed for a decision (or just 1)

2 purposes:

- PG cluster Leader election
- Client routing (not covered here)

14

Creating a PG cluster

- Procedure
- initdb a first PG instance = Leader
- Clone the cluster to bootstrap Replicas
- Make Replicas follow the Leader

- Clone (== must copy the PG datadir/ in some state)
- Typically = pg_basebackup = copy current datadir/ + WAL
- Using infrastructure = disk clone + WAL

- Result
- 1 PG instance as a Leader
- 2 PG instances as Replicas

15

Creating a PG cluster - demo
- su - postgres -c '/usr/local/bin/initdb -D /var/lib/postgresql/data/ -k'

16

Creating a Replica - easy way

pg_basebackup -c fast -C -P -v --slot=blue -R -h pg-red -D /var/lib/postgresql/data

17

Creating a Replica - hard way

18

Let's Promote Everyone…

Split-Brain scenario

OK, let's get back

19

walsender + walreceiver processes

- Leader has a walsender process (per Replica)

- Replicas have a walreceiver process

20

Physical Replication in psql

- Leader has pg_replication_slots + pg_stat_replication
- Replicas have pg_stat_wal_receiver

21

Physical Replication status

Patroni CloudNativePG

22

Cluster Status

- Most info can be retrieved from previously mentioned commands
- Status: Cluster is in healthy state

~~ Primary ready and no Replica in creation (might be slightly off)

23

Replication Conflicts

FLUSH_LSN vs. REPLAY_LSN (save to replica's disk vs. visible in replica PG)

24

Switchover - Happy Path

- Procedure
- Start with a healthy Leader + 2 Replicas
- Stop a Leader, let Replicas catch up
- Choose a New Leader
- Create replication slots on a new Leader
- Promote a new Leader
- Make the Old Leader + 2nd Replica follow the New Leader

- Result
- Another PG instance is the Leader, 2 Replicas follow
- We didn't lose ANY data
- WAL timeline has changed

25

Switchover - Happy Path - Demo - Stop Old Leader

26

Switchover - Happy Path - Demo - Start New Leader

27

Switchover - Happy Path - Demo - Old Leader As Replica

28

Switchover - Happy Path - Demo - Replica Leader Switch

Condition: same replication slot name

29

Switchover - Happy Path - Logical Replication Slots

- Problem: Replication Slots from the Old Leader are not transferred
- Typically a problem for Logical replication, CDC

Patroni:
On replicas that are eligible for a failover, Patroni creates the logical replication slot by copying the slot file from the primary and restarting the replica. In order to copy
the slot file Patroni opens a connection to the primary with `rewind` or `superuser` credentials and calls `pg_read_binary_file()` function.

When the logical slot already exists on the replica Patroni periodically calls `pg_replication_slot_advance()` function, which allows moving the slot forward.

CloudNativePG
Standby HA slot: a physical replication slot for a standby whose lifecycle is entirely managed by another standby in the cluster, based on the content of the

pg_replication_slots view in the primary, and updated at regular intervals using pg_replication_slot_advance().

30

Switchover - Waiting for Leader Shutdown

Can be made faster? Postgres will accept any new transactions after shutdown
command.

Explicit CHECKPOINT before can shorted down-time period.

Shutdown modes are:
 smart quit after all clients have disconnected
 fast quit directly, with proper shutdown (default)
 immediate quit without complete shutdown; will lead to recovery on restart

CloudNativePG - Smart + Fast shutdown

- .spec.smartShutdownTimeout (no new connections only, but finish existing) + .spec.stopDelay, min 15s for WAL
archiving

31

Leader Selection process

We should NOT promote:

- replica not catching up WAL
- replica not being able to serve

traffic as a Leader
- …

Patroni approach - tags: nofailover + (since 2023)
failover_priority : integer, controls the priority that this node
should have during failover. Nodes with higher priority will
be preferred over lower priority nodes if they
received/replayed the same amount of WAL. However,
nodes with higher values of receive/replay LSN are
preferred regardless of their priority.

CloudNative PG approach

// Set the first pod in the sorted list as the new targetPrimary
return mostAdvancedInstance.Pod.Name, …

32

Leader Selection - Asymmetrical Instances

Some GUCs (config values) must be at least the same or greater:

max_wal_senders, max_replication_slots…

Used to be a thing in a past + with manual failover

Historical use case = have a small physical replica for backup purposes (that DBA
scales manually during an incident)

33

Switchover - Unhappy Path

- Replica being shut down for a while
- Replica lost / has corrupted WAL files
- …

Options:

- wait (prefer consistency)
- promote = lose data (prefer availability)

(CAP theorem)

Prevention:

- monitoring

34

Failover - "Happy Path"

"Happy" = we are absolutely sure that Leader is dead and Replicas caught up

- Procedure
- Start with 1 Leader (DEAD !) + healthy 2 Replicas
- (!!!) Make sure Old Leader can't start
- Choose the most advanced (?) Replica as a New Leader
- Create a replication slot for Replica on a New Leader
- Promote chosen Replica to a new Leader
- Make 2nd Replica follow a new Leader
- Make old Leader follow a new Leader BEFORE it starts (it MUST NOT get any writes)

- Result
- Another PG instance is the Leader, 1 Replica follow
- Minimal data loss
- WAL timeline has changed
- Leader is fenced, Old Leader can be turned to Replica (no split-brain) without reinit

35

Failover - "Happy Path" - Demo - Old Leader failure

36

Failover - "Happy Path" - Demo - Inspect Replicas

PG functions to get WAL for Replica are different

Compare the latest receive LSN…

37

Leader Fencing

- Separating / Self-containing / Blocking PG instance Leader from either clients
or other PG instances

- Rerouting clients to other PG instances
- Marking original Leader as "ill" / dead / needs maintenance

Probably the hardest part to get right in PG "product".

38

Failover - "Happy Path" - Demo - Promote New Leader

39

Failover - "Unhappy Path"

- Procedure
- Start with a Old Leader (alive) + healthy 2 Replicas
- Forget about a Old Leader
- Choose and promote any Replica to a New Leader
- Make 2nd Replica follow a new Leader
- (But some clients are writing to the original Leader at the same time or even maintenance -

VACUUM, ANALYZE)
- Result

- "Split brain" = we have 2 incompatible leaders (and timelines)
- One needs to be discarded and data will be lost
- (Don't even think about "merging" data together during such an incident)

40

Split Brain (pg-blue = Leader, promote pg-green)

- Conditions: Two or more Leaders have diverged in WAL
- Only possible triggers == pg_promote() or other PITR event (new timelineID)

pg-blue is still a Leader

41

Split Brain (pg-blue fails to follow pg-green)

Demote pg-blue and make it follow a new leader

42

Split Brain Detection

- Ultimate verification - PG instance can or can't follow the New Leader
- Multiple Leader in the cluster
- Different timelines branching:

- Old Leader timelineID=x has LSN > branching point of New Leader with timelineID=x+1
- Two New Leaders with the same timelineID have a different branching point

- last WAL .history file is kept

- What if we branch at the same LSN? (2 caught-up Replicas both pg_promote'd)

43

Split-Brain at the same LSN Experiment

- Procedure:
- 1 Leader + 2 Replicas
- Stop Leader, let both Replicas catch

up
- Promote both Replicas (2nd Leader,

3rd Leader) at the same time (LSN)
- Do the same operations and ~ WAL

amount change on both Replicas
(INSERTs)

- Try to turn 3rd Leader to follow the
2nd Leader

44

pg-red

pg-green

pg-blue

?Split brain
(~ same data + WAL amount)

Leader Fencing - approaches

- SystemD - block from starting
- Disable VM
- Take VM off the network

Patroni

- Demotes Patroni process + shutdown PG

CloudNativePG

- Different meaning (manual action of
keeping "empty Pod" running for
inspection)

- "Fencing" during failover - PG shutdown

45

Rescuing an Old Leader

- Must restore exact clone of New
Leader

- Not possible if timelines have
diverged?

… or pg_rewind

Patroni

pg_rewind + pg_basebackup + backup tools

CloudNativePG

pg_rewind + pg_basebackup + Barman backup

46

pg_rewind

- Idea: "pg_rewind examines the timeline histories of the source and target
clusters to determine the point where they diverged, and expects to find
WAL in the target cluster's pg_wal directory reaching all the way back to the
point of divergence."

- If pg_rewind fails => pg_basebackup
- Rewinding old Leader to become Replica

- also - for example resetting a test cluster to some default state quickly

47

Rescuing an Old Leader - Demo

Procedure:

- Split Brain has occured in "recent" past
- Stop Old Leader
- pg_rewind
- Make Old Leader a Replica

- data_checksums or wal_log_hints required
- Having a WAL archive is likely a must for active workloads

48

Rescuing an Old Leader - Demo

49

PG Instance Keeps Same Config After a VM/Pod Restart

- It might continue serving as
Leader even another one was
already selected

- It might continue to follow
previous Leader who has
changed since

No good solution without additional
tools, some other process needs to
check who should be the leader and
react to it.

Patroni

- Patroni process is wrapping PG instance
and manages its lifecycle fully

CloudNativePG

- Operator starts first and decides what to
do and how to start/kill Pods

- Postgres Instance manager process wraps
PG instance inside the Pod

50

Source of Truth (DCS) is Lost / Unable to Write

- Source of Truth will fail sometimes
- Trade-off

- Either be safe (all nodes as
Replicas)

- or keep the current state
(might lead to split brain)

Practical example: maintenance on etcd
for Patroni / Kubernetes cluster

Patroni

- Failsafe DCS Mode

CloudNativePG

- Not your problem - without kube-apiserver
you can't make any changes to Pods
anyway

- Leader election for Controller

51

Is the Leader healthy? Can we detect a problem fast?

- Low level
- Is the port opened
- Can we login
- VM overloaded
- Out of disk space

- But also be tolerant to glitches

Patroni

- DCS Lock
- Watchdog

CloudNativePG

- Kubernetes Pod probes
- Controller

52

Poor Clients

- With each Leader switch, the clients needs to reconnect
- Good support in libpq, however not with all drivers
- Typically a problem fencing

- Many options, no single winner
- haproxy
- pgbouncer
- Kubernetes networking
- …

53

Key Takeaway

- You have a good failover plan

- You have tested your backups & disaster-recovery plan

- You have a good monitoring, so the replicas are healthy

- You can was up any time and instantly be focused 100%

- You don't do any mistakes

- And you execute the failover perfectly with downtime <100min

- And you execute the failover perfectly with downtime <10min

- And you execute the failover perfectly with downtime <1min

Less absurd

More absurd

54

Key Takeaway

Just don't manage PG cluster on you own, use a proven tool.

Apologies, Patroni logo might be incorrect

55

That's all I had…

56

