Failover and Switchover Deep
Dive with Manual Resolution

2025 David Pech

About Me

ORACLE aWS
Cloud Infrastructure " .-7

David Pech

|s Postgres a Distributed System?

not quite

"import / export"

leader (can write) / replica (read-only)
how to point clients to a leader?

easy to resync data between replicas? (no)

can we serve only part of dataset? (not with physical)
multiple leaders? (sure)

always connect to leader only? (sure - only with libpQq)

Postgres as a Product

Linux Kernel

SystemD

Postgres (== core)

Patroni, RepMgr, PG Kubernetes operator

Do-lt-Yourself, Helm chart, "distributions” ...

Web Ul, CDC...

Linux Kernel

SystemD

Apache Kafka (without ZooKeeper now)

Confluent Platform, Kafka-connect, ...

Physical Replication

- Each DB cluster has unique "Database system identifier"
- Different Instances == Clones of the same Cluster

- Replica needs to process exactly the same change data (WAL) as Leader
- Any difference => not a clone anymore, not a correctly working replica
- (You can't lose or change any WAL segment)

- Replication slot
- Just a logical concept for a Leader to track all Replica WAL positions

- Main objective = coordinate what to send to replicas + not to lose data before the replicas can
fetch them

(vs. Logical replication = completely separate PG Clusters)

Log Sequence Number (LSN) & Timeline

- PG instance track its current "writing position" in bytes
(== pointer to Write Ahead Log (WAL) position)

LSN can be used to calculate "drift" in bytes

- Timeline = each Point-In-Time-Recovery (PITR) event a new timeline is create

(+1)

history file is generated to track "branching"

Log Sequence Number (LSN) & Timeline Example

12:05:00
REDO ‘ Recovery
~ point % © target _
: [» :
= » e _ _
T — | T Original database's archive-logs
T —] —_ TimeLineld = 1
000000010000000000000009 : 00000001000000000000000A.
- - Recovered database's WAL-segments
E— TimeLineld = 2

00000002000000000000000A

Image: https.//www.interdb.jp/pg/pgsql10/03.html

https://www.interdb.jp/pg/pgsql10/03.html

Log Sequence Number (LSN) & Timeline DEMO

root=# SELECT pg_current_wal_lsn(), pg_current_wal_insert_lsn();
-[RECORD 1]-———————————— e
pg_current_wal_lsn | ©/197C98B8
pg_current_wal_insert_lsn | 0/197C9A20

root=# SELECT pg_current_wal_lsn(), pg_current_wal_insert_lsn();
-[RECORD 1]———————————— A
pg_current_wal_lsn | ©/1996CF98
pg_current_wal_insert_lsn | 0/1996D128

root=# SELECT pg_current_wal_lsn() - '0/0';

?column? | 435596904

root=# SELECT '@/C6F54810'::pg_lsn - '@/BCD270D0@'::pg_lsn;
?column? | 170055488

root=# SELECT system_identifier FROM pg_control_system();
-[RECORD 1]————- e

system_identifier | 7462225020764606494

root=# SELECT timeline_id FROM pg_control_checkpoint();
—-[RECORD 1]-—-

timeline_id | 1

root=# SELECT pg_walfile_name(pg_current_wal_1sn());

—[RECORD 1 J-——t————— e
pg_walfile_name | 00000001000000000000001C

RPO and RTO

How much data can you afford to How quickly must you recover?
recreate or lose? RPO VS RTO What is the cost of downtime?

Recover Point Event/Disaster Recover Time

(RPOl \L(RTO)

Normal operation E Data Loss ' ' Downtime 3 Normal operation

RPO - measured primarily in bytes (replica lag) => LSN calculations

Image: https://www.rubrik.com/insights/rto-rpo-whats-the-difference

https://www.rubrik.com/insights/rto-rpo-whats-the-difference

Following Examples

- pg-red - Leader
- pg-green - Replica
- pg-blue - Replica

10

pg_is _in_recovery() - on the replica side

[root=# SELECT pg_is_in_recovery();
pg_is_in_recovery

t
(1 row)

[root=# SELECT * FROM pg_stat_wal_receiver ;

—[RECORD 1 1] :

pid | 29

status | streaming

receive_start_1lsn | ©/29000000

receive_start_tli | 1

written_lsn | ©/2DCOE7A8

flushed_1sn | ©/2DCOE7A8

received_tli | 1

last_msg_send_time | 2025-01-21 04:58:54.180504+00
last_msg_receipt_time | 2025-01-21 04:58:54.180532+00
latest_end_1lsn | ©/2DCOE7A8

latest_end_time | 2025-01-21 04:58:54.180504+00
slot_name | blue

sender_host | pg-red

sender_port | 5432

conninfo | user=root passfile=/root/.pgpass channel_binding=prefer dbname=replication host=pg-red port=5432 fallback_applicat
ion_name=walreceiver sslmode=prefer sslnegotiation=postgres sslcompression=0 sslcertmode=allow sslsni=1 ssl_min_protocol_version=TLSv1.2 g
ssencmode=prefer krbsrvname=postgres gssdelegation=0 target_session_attrs=any load_balance_hosts=disable

IIiIII

pg_promote()

If already not in recovery => Error

Does not require PG instance restart
- removes standby.signal (typically also postgresql.auto.conf)

cat /var/lib/postgresql/data/postgresql.auto.conf
Do not edit this file manually!
It will be overwritten by the ALTER SYSTEM command.
primary_conninfo = 'user=root passfile=''/root/.pgpass'' channel_binding=prefer host=''pg-red'' port=5432 sslmode=prefer sslnegotiation=pc
stgres sslcompression=0 sslcertmode=allow sslsni=1 ssl_min_protocol_version=TLSv1l.2 gssencmode=prefer krbsrvname=postgres gssdelegation=0
target_session_attrs=any load_balance_hosts=disable’
primary_slot_name = 'blue'

root=# select pg_promote();
2025-01-21 05:10:46.716 UTC [28] LOG: received promote request
2025-01-21 05:10:46.717 UTC [29] FATAL: terminating walreceiver process due to administrator command
2025-01-21 05:10:46.717 UTC [28] LOG: invalid record length at ©/4B126028: expected at least 24, got ©
2025-01-21 ©5:10:46.717 UTC [28] LOG: redo done at ©/4B125FE8 system usage: CPU: user: 14.70 s, system: 11.37 s, elapsed: 802.38 s
2025-01-21 05:10:46.717 UTC [28] LOG: 1last completed transaction was at log time 2025-01-21 05:10:46.714676+00
2025-01-21 05:10:46.721 UTC [28] LOG: selected new timeline ID: 2
2025-01-21 05:10:46.747 UTC [28] LOG: archive recovery complete
2025-01-21 ©5:10:46.753 UTC [25] LOG: database system is ready to accept connections
pg_promote

pg_demote() ?

- No such function
- Leader needs to be restarted (NO other way)

su — postgres -c '/usr/local/bin/pg_ctl -D /var/lib/postgresql/data stop'
waiting for server to shut down....2025-01-21 ©5:22:37.819 UTC [25] LOG: received fast shutdown request
2025-01-21 05:22:37.822 UTC [25] LOG: aborting any active transactions
2025-01-21 05:22:37.824 UTC [25] LOG: background worker "logical replication launcher" (PID 39) exited with exit code 1
2025-01-21 05:22:37.825 UTC [26] LOG: shutting down
2025-01-21 ©5:22:37.825 UTC [26] LOG: checkpoint starting: shutdown immediate
2025-01-21 05:22:37.830 UTC [26] LOG: checkpoint complete: wrote @ buffers (0.0%); @ WAL file(s) added, © removed, @ recycled; write=0.00
1 s, sync=0.001 s, total=0.006 s; sync files=0, longest=0.000 s, average=0.000 s; distance=0 kB, estimate=317826 kB; 1lsn=0/4B1261D8, redo
1sn=0/4B1261D8
2025-01-21 05:22:37.841 UTC [25] LOG: database system is shut down
done
server stopped
[touch /var/lib/postgresql/data/standby.signal
echo >>/var/lib/postgresql/data/postgresql.auto.conf "primary_conninfo = '...CONN INFO...'"
echo >>/var/lib/postgresql/data/postgresqgl.auto.conf "primary_slot_name = 'green'"

13

Who is the Leader now?

- Single source of truth is needed to make decisions
- Simple example = monitoring VM
- Real examples

- Patroni utilizes "Distributed Configuration Store" (DCS) - etcd, ...

- PG operators in Kubernetes - kube-apiserver (etcd behind)
- 3 or 5 nodes are needed for a decision (or just 1)

2 purposes:

- PG cluster Leader election
- Client routing (not covered here)

14

Creating a PG cluster

- Procedure
- initdb a first PG instance = Leader
- Clone the cluster to bootstrap Replicas
- Make Replicas follow the Leader
- Clone (== must copy the PG datadir/ in some state)
- Typically = pg_basebackup = copy current datadir/ + WAL
- Using infrastructure = disk clone + WAL
- Result

- 1 PG instance as a Leader
- 2 PG instances as Replicas

15

Creating a PG cluster - demo

= su - postgres -c '/usr/local/bin/initdb -D /var/lib/postgresql/data/ -k'

1-initdb.sh
The files belonging to this database system will be owned by user "postgres".
This user must also own the server process.

The database cluster will be initialized with this locale configuration:
locale provider: libc
LC_COLLATE: C
LC_CTYPE: C.UTF-8
LC_MESSAGES: C
LC_MONETARY: C
LC_NUMERIC: C
LC_TIME: (o]
The default database encoding has accordingly been set to "UTF8".
The default text search configuration will be set to "english".

Data page checksums are enabled.

fixing permissions on existing directory /var/lib/postgresql/data ... ok
creating subdirectories ... ok

selecting dynamic shared memory implementation ... posix

selecting default "max_connections" ... 100

selecting default "shared_buffers" ... 128MB

selecting default time zone ... UTC

creating configuration files ... ok

running bootstrap script ... ok

performing post-bootstrap initialization ... sh: locale: not found
2025-01-21 ©5:27:22.140 UTC [26] WARNING: no usable system locales were found
ok

syncing data to disk ... ok

initdb: warning: enabling "trust" authentication for local connections
initdb: hint: You can change this by editing pg_hba.conf or using the option -A, or ——auth-local and -—auth-host, the next time you run in
itdb.

Success. You can now start the database server using:

/usr/local/bin/pg_ctl -D /var/lib/postgresql/data/ -1 logfile start

16

Creating a Replica - easy way

pg_basebackup -c fast -C -P -v --slot=blue -R -h pg-red -D /var/lib/postgresql/data

[1-pg_basebackup.sh

pg_basebackup: initiating base backup, waiting for checkpoint to complete
pg_basebackup: checkpoint completed

pg_basebackup: write—-ahead log start point: 0/3000028 on timeline 1
pg_basebackup: starting background WAL receiver

pg_basebackup: created replication slot "blue"

53684/53684 kB (100%), 1/1 tablespace

pg_basebackup: write—-ahead log end point: 0/3000120

pg_basebackup: waiting for background process to finish streaming ...
pg_basebackup: syncing data to disk ...

pg_basebackup: renaming backup_manifest.tmp to backup_manifest
pg_basebackup: base backup completed

| ls /var/lib/postgresql/data/
PG_VERSION
backup_label
backup_manifest pg_hba.conf postgresgl.auto.conf
pg_ident.conf postgresql.conf
standby.signal

Creating a Replica - hard way

pg-green# psql —-h pg-red
psql (17.2)
Type "help" for help.

root=# SELECT pg_create_physical_replication_slot('green');
pg_create_physical_replication_slot

(green,)
(1 row)

root=# SELECT pg_backup_start(label => 'green', fast => true);
pg_backup_start

0/70000B0 pg-green# mv /mnt/backup/x /var/lib/postgresql/data/
(1 row) [pg-green# touch /var/lib/postgresql/data/standby.signal
T G R pg-green# echo >>/var/lib/postgresql/data/postgresql.auto.conf "primary_conninfo = 'user=root
root=# SELECT % FROM pg_backup_stop(wait_for archive => I€fer host=''pg-red'' port=5432 sslmode=prefer sslnegotiation=postgres sslcompression=0 sslce
1sn | labelfile n=TLSv1.2 gssencmode=prefer krbsrvname=postgres gssdelegation=0 target_session_attrs=any load
; - pg-green# echo >>/var/lib/postgresql/data/postgresqgl.auto.conf "primary_slot_name = 'green'"
0/1B809550 I gﬂéglpgﬁh#fgémg&:%Z?gzg?ﬁ@(me eaeaee‘pgtgl.:‘een# su - postgres -c '/usr/local/bin/pg_ctl -D /var/lib/postgresql/data start'
| BACKUP METHOD: streamed waiting for server to start....2025-01-21 05:51:58.207 UTC [47] LOG: starting PostgreSQL 17.
| BACKUP FROM: primary gcc (Alpine 14.2.0) 14.2.0, 64-bit
| START TIME: 2025-01-21 @5:46:43 UTC 2025-01-21 05:51:58.207 UTC [47] LOG: 1listening on IPv4 address "0.0.0.0", port 5432
| éﬁiﬁi}?ﬁéﬂm-) 2025-01-21 05:51:58.207 UTC [47] LOG: listening on IPvé address "::", port 5432
I ’ 2025-01-21 ©5:51:58.209 UTC [47] LOG: 1listening on Unix socket "/var/run/postgresql/.s.PGSQL
(1 row) 2025-01-21 05:51:58.211 UTC [50] LOG: database system was shut down in recovery at 2025-01-2

2025-01-21 05:51:58.211 UTC [50] LOG: entering standby mode

2025-01-21 05:51:58.213 UTC [50] LOG: redo starts at ©/70000B0

.2025-01-21 ©5:51:59.714 UTC [50] LOG: consistent recovery state reached at ©/15CA3B58
2025-01-21 05:51:59.715 UTC [47] LOG: database system is ready to accept read-only connectio
2025-01-21 ©05:51:59.715 UTC [50] LOG: invalid record length at ©0/15CA3CE8: expected at least
2025-01-21 05:51:59.718 UTC [51] LOG: started streaming WAL from primary at 0/15000000 on ti
done

server started

pg-green# psql

Let's Promote Everyone... psal (17.2)

Type "help" for help.

root=# SELECT pg_promote();

2025-01-21 06:05:54.488 UTC LOG: received
2025-01-21 06:05:54.488 UTC FATAL: termin:
psql 2025-01-21 06:05:54.490 UTC LOG: invalid
psgl (17.2) 2025-01-21 06:05:54.490 UTC LOG: redo done
Type "help" for help. 2025-01-21 06:05:54.491 UTC LOG:
2025-01-21 06:05:54.494 UTC LOG: selected
root=# SELECT pg_promote(); 2025-01-21 06:05:54.517 UTC LOG: archive
2025-01-21 06:05:56.268 UTC LOG:(2025-01-21 :05:54.542 UTC LOG: database
2025-01-21 06:05:56.268 UTC FATAl pg_promote
2025-01-21 06:05:56.269 UTC [29] LOG: ~——————————
2025-01-21 06:05:56.269 UTC LOG:
2025-01-21 06:05:56.269 UTC LOG:
2025-01-21 06:05:56.271 UTC LOG:
2025-01-21 06:05:56.295 UTC LOG: root=# 2025-01-21 06:06:22.608 UTC [24] LOG: re
- I I 2025-01-21 06:05:56.313 UTC LOG: @ recycled; write=79.083 s, sync=0.004 s, tota
Esr)lrt Esrfilr] scenario 2025-01-21 :05:56.315 UTC LOG: timate=270941 kB; 1lsn=0/2487E760, redo 1lsn=0/17¢

pg_promote 2025-01-21 06:06:22.608 UTC [24] LOG: recovery
———————————— 2025-01-21 06:06:22.608 UTC [24] DETAIL: Last ¢
2025-01-21 06:06:22.609 UTC [24] LOG: checkpoi

root=#

C),<; IE}tE; g]E?t t)éﬂ(;l(root=# SELECT pg_current_wal_lsn(); | root=# SELECT pg_current_wal_lsn();
pg_current_wal_lsn pg_current_wal_lsn

0/44FC4D28 0/44LEASEAQ
(1 row) (1 row)

root=# [J root=# |J

walsender + walreceiver processes

- Leader has a walsender process (per Replica)

ps uax | grep sender

195 postgres 0:05 postgres: walsender root 172.20.0.3(41048) streaming ©0/6766BDB8

- Replicas have a walreceiver process

ps uax | grep wal
72 postgres 0:06 postgres: walreceiver streaming 0/66ABD7F8

20

Physical Replication in psql

Leader has pg_replication_slots + pg_stat replication
Replicas have pg_stat wal receiver

conflicting

invalidation_reason

failover

sync_priority
sync_state
reply_time

0
async 21
2025-01-21 06:19:41.069414+00

root=# select * from pg_replication_slots where slot_name = 'blue'; jliroot=# select * from pg_stat_replication;
—[RECORD 1 1 + —[RECORD 1 1]
slot_name | blue pid | 195
plugin | usesysid | 16385
slot_type | physical usename | root
datoid | application_name | walreceiver
database | client_addr | 172.20.0.3
temporary | client_hostname |
active | t client_port | 41048
active_pid | 195 backend_start | 2025-01-21 06:14:28.084716+00
xmin | backend_xmin |
catalog_xmin | state | streaming
restart_lsn | ©/6FEF5DF@ sent_lsn | ©/736F0958
confirmed_flush_1sn | write_1lsn | ©/736F07C8
wal_status | reserved flush_lsn | ©/736F07C8
Sl wite lag | 00:00:00.000073
write_lag :100:00.
E:ggggszesince I f flush_lag | 00:00:00.000193
0 | replay_lag | 00:00:00.000559
| I
| |
|

synced

f
f

Physical Replication status

Patroni CloudNativePG

kubectl cnpg status sandbox

$ patronictl -c postgres@.yml list batman
+ Cluster: batman (7277694203142172922) —+-

| Member | Role | State Cluster Summary
Name: default/sandbox

| postgresqle | 127. 15432 | Leader | running System ID: 7423474350493388827

| postgresqll | 127. :5433 | Replica | streaming | Po§tgreSQL Image: ghcr.io/cloudnative-pg/postgresql:16.4

i ; ; Primary instance: sandbox-1

| postgresql2 | 127.0.0.1:5434 | Replica | streaming | Primary start time: 2024-10-08 18:31:57 +0000 UTC (uptime 1mlds)
Status: Cluster in healthy state
Instances: 3
Ready instances: 3
Size: 126M

Current Write LSN: 0/604DE38 (Timeline: 1 — WAL File: 000000010000000000000006)

Continuous Backup status
Not configured

Streaming Replication status

Replication Slots Enabled

Name Sent LSN Write LSN Flush LSN Replay LSN Write Lag Flush Lag Replay Lag State
sandbox-2 ©0/604DE38 0/604DE38 0/604DE38 0/604DE38 00:00:00 00:00:00 00:00:00 stre:
sandbox-3 ©0/604DE38 0/604DE38 0/604DE38 0/604DE38 00:00:00 00:00:00 00:00:00 stre:

Instances status

Name Current LSN Replication role Status QoS Manager Version Node

sandbox-1 ©/604DE38 Primary 0K BestEffort 1.25.0 k8s-eu-worker
sandbox-2 ©/604DE38 Standby (async) 0K BestEffort 1.25.0 k8s—eu-wor: or2
sandbox-3 0/604DE38 Standby (async) 0K BestEffort 1.25.0 k8s—eu-worker

Cluster Status

- Most info can be retrieved from previously mentioned commands
- Status: Cluster is in healthy state

~~ Primary ready and no Replica in creation (might be slightly off)

[Bug]: Cluster in healthy state despite "WAL archive check failed" #6137

(™ Open

[Bug]: "Cluster is in healthy state" despite O running pods #5150

(Open

Replication Conflicts

psgl mydb
psgl (17.2)
Type "help" for help.

mydb=# ALTER SYSTEM SET max_standby_streaming_delay ='100ms';

ALTER SYSTEM

Imydb=# SELECT pg_reload_conf();

2025-01-21 06:31:19.419 UTC [68] LOG: received SIGHUP, reloading configuration files
pg_reload_conf

3
(1 row)

mydb=# 2025-01-21 06:31:19.421 UTC [68] LOG: parameter "max_standby_streaming_delay" changed to "100ms"

Imydb=# begin; select * from pgbench_accounts order by random(), random(), random();

BEGIN

2025-01-21 06:31:27.980 UTC [83] FATAL: terminating connection due to conflict with recovery

2025-01-21 06:31:27.980 UTC [83] DETAIL: User query might have needed to see row versions that must be removed.

2025-01-21 06:31:27.980 UTC [83] HINT: 1In a moment you should be able to reconnect to the database and repeat your command.

FLUSH_ LSN vs. REPLAY LSN (save to replica's disk vs. visible in replica PG)

Switchover - Happy Path

- Procedure

Start with a healthy Leader + 2 Replicas

Stop a Leader, let Replicas catch up

Choose a New Leader

Create replication slots on a new Leader

Promote a new Leader

Make the Old Leader + 2nd Replica follow the New Leader

- Result

Another PG instance is the Leader, 2 Replicas follow
We didn't lose ANY data
WAL timeline has changed

25

Switchover - Happy Path - Demo - Stop OIld Leader

su - postgres -c '/usr/local/bin/pg_ctl -D /var/lib/postgresql/data/ stop -m fast'
waiting for server to shut down....2025-01-21 06:48:38.495 UTC [337] LOG:
2025-01-21 06:48:38.510 UTC [337] LOG: aborting any active transactions
2025-01-21 06:48:38.513 UTC [338] LOG: shutting down
2025-01-21 06:48:38.528 UTC [337] LOG: database system is shut down

received fast shutdown request

done
server stopped

START NEW LEADER HERE

26

Switchover - Happy Path - Demo - Start New Leader

pg-green#
pg-green#
pg-green# 2025-01-21 06:44:43.929 UTC [21] LOG:

2025-01-21 06:44:43.929 UTC [21] DETAIL:
2025-01-21 06:44:43.930 UTC [21] FATAL:
edly

This probably means the server
before or while processing the

no COPY in progress
2025-01-21 06:44:43.931 UTC [20] LOG:
2025-01-21 06:44:43.942 UTC [22] FATAL:
ort 5432 failed:

pg-green# psql
psql (17.2)
Type "help" for help.

root=# \x

Expanded display is on.

root=# SELECT * FROM pg_replication_slots;
(0 rows)

root=# SELECT pg_create_physical_ repllcatlon slot('red');
—[RECORD 1 1]
pg_create_physical_replication_slot | (red,)

root=# SELECT pg_create_physical_ repllcatlon slot('blue');
—[RECORD 1 1]
pg_create_physical_replication_slot | (blue,)

root=# SELECT pg_promote();
—[RECORD 1 1-
pg_promote | t

could

invalid
could

replication terminated by primary server
End of WAL reached on timeline 1 at ©/B94CE3ES.
not send end-of-streaming message to primary:

terminated abnormally

request.

record length at 0/B94CE3ES8:
not connect to the primary server:

server closed the connection unexpectedly
This probably means the server terminated abnormally

2025-01-21
2025-01-21
2025-01-21
2025-01-21
2025-01-21
2025-01-21
2025-01-21
2025-01-21

06:
06:
06:
06:
06:
06:
06:
06:

46:
46:
46:
46:
46:
46:
46:
46:

Is the server running on that host
2025-01-21 06:46:24.016 UTC [20] LOG:

2025-01-21 06:46:29.016 UTC [51] FATAL:
ort 5432 failed: Connection refused
Is the server running on that host
.018
32.
327
32.
32.
32.
32.
32°

29

349
349
350
352
371
373
375

server closed the connection unexpect

expected at least 24, got @

uTC
uTC
uTC
uTc
e
uTC
uTcC
uTC

[20]
[20]
[20]
[20]
[20]
[20]
[18]
[17]

connection to server at "pg-red"

LOG:
LOG:
LOG:
LOG:
LOG:
LOG:
LOG:
LOG:

(172.20.0.2), p

and accepting TCP/IP connect:
WAL to become available at 9,
connect to the primary serve:

waiting for
could not

and accepting TCP/IP connect:
waiting for WAL to become available at 9
received promote request

redo done at 0/B94CE370 system usage: CPl
last completed transaction was at log tir
selected new timeline ID: 2

archive recovery complete

checkpoint starting: force

database system is ready to accept conne

Switchover - Happy Path - Demo - Old Leader As Replica

START NEW LEADER HERE

touch /var/lib/postgresql/data/standby.signal

echo >>/var/lib/postgresql/data/postgresqgl.auto.conf "primary_conninfo = 'user=root passfile='"'/root/.pgpass'' channel_bin
ding=prefer host=''pg-green'' port=5432 sslmode=prefer sslnegotiation=postgres sslcompression=0 sslcertmode=allow sslsni=1 ssl_min
_protocol_version=TLSv1.2 gssencmode=prefer krbsrvname=postgres gssdelegation=0 target_session_attrs=any load_balance_hosts=disabl
elll

echo >>/var/lib/postgresql/data/postgresql.auto.conf "primary_slot_name = 'red'"

[su — postgres -c '/usr/local/bin/pg_ctl -D /var/lib/postgresql/data start'
waiting for server to start....2025-01-21 06:49:30.621 UTC [352] LOG: starting PostgreSQL 17.2 on aarché4-unknown-linux-musl, com
piled by gcc (Alpine 14.2.0) 14.2.0, 64-bit

2025-01-21 06:49:30.621 UTC [352] LOG: 1listening on IPv4 address "0.0.0.0", port 5432

2025-01-21 06:49:30.621 UTC [352] LOG: 1listening on IPv6é6 address "::", port 5432

2025-01-21 06:49:30.623 UTC [352] LOG: listening on Unix socket "/var/run/postgresql/.s.PGSQL.5432"
2025-01-21 06:49:30.626 UTC [355] LOG: database system was shut down in recovery at 2025-01-21 06:48:38 UTC
2025-01-21 06:49:30.626 UTC [355] LOG: entering standby mode

2025-01-21 06:49:30.628 UTC [355] LOG: consistent recovery state reached at ©/B94CE3ES8

2025-01-21 06:49:30.628 UTC [355] LOG: invalid record length at ©/B94CE3E8: expected at least 24, got ©
2025-01-21 06:49:30.628 UTC [352] LOG: database system is ready to accept read-only connections
2025-01-21 06:49:30.632 UTC [356] LOG: fetching timeline history file for timeline 2 from primary server
2025-01-21 06:49:30.634 UTC [356] LOG: started streaming WAL from primary at 0/B9000000 on timeline 1
2025-01-21 06:49:30.638 UTC [356] LOG: replication terminated by primary server

2025-01-21 06:49:30.638 UTC [356] DETAIL: End of WAL reached on timeline 1 at ©/B94CE3ES8.

2025-01-21 06:49:30.638 UTC [356] FATAL: terminating walreceiver process due to administrator command
2025-01-21 06:49:30.639 UTC [355] LOG: new target timeline is 2

2025-01-21 06:49:30.643 UTC [357] LOG: started streaming WAL from primary at ©0/B9000000 on timeline 2
2025-01-21 06:49:30.656 UTC [355] LOG: redo starts at ©/B94CE3ES8

done

server started

Switchover - Happy Path - Demo - Replica Leader Switch

| psql
psql (17.2)
Type "help" for help.

[root=# ALTER SYSTEM SET primary_conninfo = 'user=root passfile=''/root/.pgpass'' channel_binding=prefer host=''pg-green'' port=543
2 ssl
refer krbsrvname=postgres gssdelegation=0 target_session_attrs=any load_balance_hosts=disable'

[root—-# ;

ALTER SYSTEM

[root=# SELECT * FROM pg_reload_conf();
pg_reload_conf

(1 row)

Condition: same replication slot name

29

Switchover - Happy Path - Logical Replication Slots

Problem: Replication Slots from the Old Leader are not transferred
- Typically a problem for Logical replication, CDC

Patroni:

On replicas that are eligible for a failover, Patroni creates the logical replication slot by copying the slot file from the primary and restarting the replica. In order to copy
the slot file Patroni opens a connection to the primary with ‘rewind" or “superuser’ credentials and calls "pg_read_binary_file()" function.

When the logical slot already exists on the replica Patroni periodically calls "pg_replication_slot_advance()" function, which allows moving the slot forward.

CloudNativePG

Standby HA slot: a physical replication slot for a standby whose lifecycle is entirely managed by another standby in the cluster, based on the content of the

pg_replication_slots view in the primary, and updated at regular intervals using pg_replication_slot_advance().

30

Switchover - Waiting for Leader Shutdown

Can be made faster? Postgres will accept any new transactions after shutdown
command.

Explicit CHECKPOINT before can shorted down-time period.

Shutdown modes are:
smart quit after all clients have disconnected
fast quit directly, with proper shutdown (default)
immediate quit without complete shutdown; will lead to recovery on restart

CloudNativePG - Smart + Fast shutdown

- .spec.smartShutdownTimeout (no new connections only, but finish existing) + .spec.stopDelay, min 15s for WAL
archiving

31

Leader Selection process

We should NOT promote:

replica not catching up WAL
replica not being able to serve
traffic as a Leader

Patroni approach - tags: nofailover + (since 2023)
failover_priority : integer, controls the priority that this node
should have during failover. Nodes with higher priority will
be preferred over lower priority nodes if they
received/replayed the same amount of WAL. However,
nodes with higher values of receive/replay LSN are
preferred regardless of their priority.

CloudNative PG approach

/I Set the first pod in the sorted list as the new targetPrimary
return mostAdvancedinstance.Pod.Name, ...

32

Leader Selection - Asymmetrical Instances

Some GUCs (config values) must be at least the same or greater:

max_wal_senders, max_replication_slots...

Used to be a thing in a past + with manual failover

Historical use case = have a small physical replica for backup purposes (that DBA
scales manually during an incident)

33

Switchover - Unhappy Path

- Replica being shut down for a while
- Replica lost / has corrupted WAL files

Options:

- wait (prefer consistency)
- promote = lose data (prefer availability)

(CAP theorem)

Prevention:

- monitoring

34

Failover - "Happy Path"

"Happy" = we are absolutely sure that Leader is dead and Replicas caught up

- Procedure
- Start with 1 Leader (DEAD !) + healthy 2 Replicas
- (M) Make sure Old Leader can't start
- Choose the most advanced (?) Replica as a New Leader
- Create a replication slot for Replica on a New Leader
- Promote chosen Replica to a new Leader
- Make 2nd Replica follow a new Leader
- Make old Leader follow a new Leader BEFORE it starts (it MUST NOT get any writes)
- Result
- Another PG instance is the Leader, 1 Replica follow
- Minimal data loss
- WAL timeline has changed
- Leader is fenced, Old Leader can be turned to Replica (no split-brain) without reinit

35

Failover - "Happy Path" - Demo - Old Leader failure

rm —-rf /var/lib/postgresql/data/base/x*

2025-01-21 19:21:46.957 UTC [480] FATAL: database "templatel" does not exist
2025-01-21 19:21:46.957 UTC [480] DETAIL: The database subdirectory "base/1" is missing.
2025-01-21 19:21:48.177 UTC [471] LOG: could not receive data from client: Connection reset by peer
2025-01-21 19:21:48.177 UTC [471] LOG: unexpected EOF on client connection with an open transaction
2025-01-21 19:21:48.366 UTC [483] FATAL: database "mydb" does not exist
2025-01-21 19:21:48.366 UTC [483] DETAIL: The database subdirectory "base/16386" is missing.
2025-01-21 19:21:50.261 UTC [486] FATAL: database "mydb" does not exist
2025-01-21 19:21:50.261 UTC [486] DETAIL: The database subdirectory "base/16386" is missing.

su - postgres -c '/usr/local/bin/pg_ctl -D /var/lib/postgresgl/data stop'
waiting for server to shut down....2025-01-21 19:22:43.419 UTC [492] LOG: received fast shutdown request

2025-01-21 19:22:43.422 UTC [492] LOG: aborting any active transactions

2025-01-21 19:22:43.425 UTC [492] LOG: background worker "logical replication launcher" (PID 498) exited with exit code 1

2025-01-21 19:22:43.427 UTC [493] LOG: shutting down

2025-01-21 19:22:43.438 UTC [493] LOG: checkpoint starting: shutdown immediate

2025-01-21 19:22:43.443 UTC [493] LOG: checkpoint complete: wrote @ buffers (0.0%); @ WAL file(s) added, © removed, @ recycled; write=0.001 s, sync
=0.001 s, total=0.006 s; sync files=0, longest=0.000 s, average=0.000 s; distance=0 kB, estimate=78502 kB; 1lsn=0/D52E3E8, redo lsn=0/D52E3E8
2025-01-21 19:22:43.456 UTC [492] LOG: database system is shut down

done

server stopped

MAKE SURE PG CAN'T ACCIDENTALLY START

Failover - "Happy Path" - Demo - Inspect Replicas

root=# SELECT pg_current_wal_insert_1sn();

ERROR: recovery is in progress

HINT: WAL control functions cannot be executed during recovery.
root=# SELECT pg_current_wal_insert_1sn();

ERROR: recovery is in progress

HINT: WAL control functions cannot be executed during recovery.

root=# SELECT pg_is_in_recovery(),pg_is_wal_replay_paused(), pg_last_wal_receive_lsn(), pg_last_wal_replay_lsn(), pg_last_xact_replay_timestamp();
-[RECORD 1]-————————m———

pg_is_in_recovery

pg_is_wal_replay_paused

pg_last_wal_receive_lsn | ©/D52E460

pg_last_wal_replay_lsn | ©/D52E460

pg_last_xact_replay_timestamp | 2025-01-21 19:21:48.176914+00

PG functions to get WAL for Replica are different

Compare the latest receive LSN...

37

Leader Fencing

- Separating / Self-containing / Blocking PG instance Leader from either clients
or other PG instances

- Rerouting clients to other PG instances
- Marking original Leader as "ill" / dead / needs maintenance

Probably the hardest part to get right in PG "product”.

38

Failover - "Happy Path" - Demo - Promote New Leader

[root=# SELECT pg_create_physical_replication_slot('red');
—[RECORD 1 1] t
pg_create_physical_replication_slot | (red,)

[root=# SELECT pg_create_physical_replication_slot('green');
—[RECORD 1] t
pg_create_physical_replication_slot | (green,)

[root=# SELECT pg_promote();
—-[RECORD 1 1-
pg_promote | t

pg-green# psql
psql (17.2)
Type "help" for help.

root=# ALTER SYSTEM SET primary_conninfo = 'user=root passfile=''/root/.pgpass'' channel_binding=prefer host=''pg-blue'' port=5432 sslmode=prefer ss
lnegotiation=postgres sslcompression=0 sslcertmode=allow sslsni=1 ssl_min_protocol_version=TLSv1l.2 gssencmode=prefer krbsrvname=postgres gssdelegati
on=0 target_session_attrs=any load_balance_hosts=disable’

root-# ;
ALTER SYSTEM

root=# SELECT pg_reload_conf();

pg_reload_conf

t
(1 row)

Failover - "Unhappy Path"

- Procedure
- Start with a Old Leader (alive) + healthy 2 Replicas
- Forget about a Old Leader
- Choose and promote any Replica to a New Leader
- Make 2nd Replica follow a new Leader

- (But some clients are writing to the original Leader at the same time or even maintenance -
VACUUM, ANALYZE)

- Result
- "Split brain" = we have 2 incompatible leaders (and timelines)
- One needs to be discarded and data will be lost
- (Don't even think about "merging" data together during such an incident)

Split Brain (pg-blue = Leader, promote)

- Conditions: Two or more Leaders have diverged in WAL
- Only possible triggers == pg_promote() or other PITR event (new timelinelD)

pg-green# 2025-01-21 19:49:37.874 UTC [681] LOG: received promote request

2025-01-21 19:49:37.874 UTC [822] FATAL: terminating walreceiver process due to administrator command

2025-01-21 19:49:37.874 UTC [681] LOG: invalid record length at @/F9A6C78: expected at least 24, got ©

2025-01-21 19:49:37.876 UTC [681] LOG: redo done at @/F9A6C50 system usage: CPU: user: 2.20 s, system: 1.76 s, elapsed: 1759.46 s
2025-01-21 19:49:37.876 UTC [681] LOG: 1last completed transaction was at log time 2025-01-21 19:49:37.873379+00

2025-01-21 19:49:37.879 UTC [681] LOG: selected new timeline ID: 3

2025-01-21 19:49:37.929 UTC [681] LOG: archive recovery complete

2025-01-21 19:49:37.931 UTC [679] LOG: checkpoint starting: force

2025-01-21 19:49:37.935 UTC [678] LOG: database system is ready to accept connections

pg-blue is still a Leader

[root=# SELECT pg_current_wal_insert_lsn(), pg_walfile_name(pg_current_wal_lsn());
-[RECORD 1]-——————————- R

pg_current_wal_insert_lsn | 0/18365A00
pg_walfile_name | 900000020000000000000018

41

Split Brain (pg-blue fails to follow

Demote pg-blue and make it follow a new leader

0-start-pg.sh
waiting for server to start....2025-01-21 19:54:47.950 UTC [377] LOG: starting PostgreSQL 17.2 on aarché4-unknown-linux-musl, compiled by gcc (Alpi
ne 14.2.0) 14.2.0, 64-bit
2025-01-21 19:54:47.950 UTC [377] LOG: 1listening on IPv4 address "0.0.0.0", port 5432
2025-01-21 19:54:47.950 UTC [377] LOG: 1listening on IPv6 address "::", port 5432
2025-01-21 19:54:47.952 UTC [377] LOG: 1listening on Unix socket "/var/run/postgresql/.s.PGSQL.5432"
2025-01-21 19:54:47.954 UTC [380] LOG: database system was shut down at 2025-01-21 19:53:23 UTC
2025-01-21 19:54:47.954 UTC [380] LOG: entering standby mode
2025-01-21 19:54:47.958 UTC [380] LOG: consistent recovery state reached at 0/1A7E68D8
2025-01-21 19:54:47.958 UTC [380] LOG: invalid record length at ©/1A7E68D8: expected at least 24, got ©
2025-01-21 19:54:47.958 UTC [377] LOG: database system is ready to accept read-only connections
2025-01-21 19:54:47.962 UTC [381] LOG: fetching timeline history file for timeline 3 from primary server
2025-01-21 19:54:47.963 UTC [381] FATAL: could not start WAL streaming: ERROR: requested starting point ©/1A000000 on timeline 2 is not in this se
rver's history
DETAIL: This server's history forked from timeline 2 at @/F9A6C78.
2025-01-21 19:54:47.965 UTC [380] LOG: new timeline 3 forked off current database system timeline 2 before current recovery point @/1A7E68D8
2025-01-21 19:54:47.968 UTC [382] FATAL: could not start WAL streaming: ERROR: requested starting point ©/1A000000 on timeline 2 is not in this se
rver's history
DETAIL: This server's history forked from timeline 2 at 0/F9Aé6C78.
2025-01-21 19:54:47.968 UTC [380] LOG: new timeline 3 forked off current database system timeline 2 before current recovery point 0/1A7E68D8
2025-01-21 19:54:47.968 UTC [380] LOG: waiting for WAL to become available at ©/1A002000
done
server started

Split Brain Detection

- Ultimate verification - PG instance can or can't follow the New Leader
- Multiple Leader in the cluster

- Different timelines branching:
- Old Leader timelinelD=x has LSN > branching point of New Leader with timelinelD=x+1
- Two New Leaders with the same timelinelD have a different branching point

- last WAL .history file is kept

- What if we branch at the same LSN? (2 caught-up Replicas both pg_promote'd)

43

Split-Brain at the same LSN Experiment

- Procedure: pg-red >

- 1 Leader + 2 Replicas

- Stop Leader, let both Replicas catch pg-green
up

- Promote both Replicas (2nd Leader, :
3rd Leader) at the same time (LSN) o)

- Do the same operations and ~ WAL Split brain ’
amount change on both Replicas (~ same data + WAL amount)
(INSERTS)

- Try to turn 3rd Leader to follow the
2nd Leader

’— > -

pg-blue —_— ——— . > B >

2025-01-22 18:33:40.673 UTC [163] LOG: invalid resource manager ID 86 at 0/22C7E558
2025-01-22 18:33:40.673 UTC [163] LOG: waiting for WAL to become available at ©/22002000
2025-01-22 18:33:40.674 UTC [163] LOG: invalid resource manager ID 86 at ©/22C7E558
2025-01-22 18:33:40.674 UTC [163] LOG: waiting for WAL to become available at ©/22002000

done
server started

2025-01-22 18:33:45.684 UTC [163] LOG: invalid resource manager ID 86 at 0/22C7E558
2025-01-22 18:33:45.684 UTC [163] LOG: waiting for WAL to become available at ©/22002000

Leader Fencing - approaches

- SystemD - block from starting
- Disable VM
- Take VM off the network

Patroni

- Demotes Patroni process + shutdown PG

CloudNativePG

- Different meaning (manual action of
keeping "empty Pod" running for
inspection)

- "Fencing" during failover - PG shutdown

45

Rescuing an Old Leader

- Must restore exact clone of New
Leader

- Not possible if timelines have
diverged?

... Or pg_rewind

Patroni

pg_rewind + pg_basebackup + backup tools

CloudNativePG

pg_rewind + pg_basebackup + Barman backup

46

pPg_rewind

Idea: “pg rewind examines the timeline histories of the source and target
clusters to determine the point where they diverged, and expects to find
WAL in the target cluster's pg _wal directory reaching all the way back to the
point of divergence."

If pg_rewind fails => pg_basebackup
Rewinding old Leader to become Replica
- also - for example resetting a test cluster to some default state quickly

47

Rescuing an OIld Leader - Demo

Procedure:

- Split Brain has occured in "recent" past
- Stop Old Leader

- pg_rewind

- Make Old Leader a Replica

data_checksums or wal_log_hints required
Having a WAL archive is likely a must for active workloads

su — postgres -c 'pg_rewind -D /var/lib/postgresql/data —-source-server=host=pg-green -P'
pg_rewind: connected to server
pg_rewind: servers diverged at WAL location ©/F9A6C78 on timeline 2

pg_rewind: error: could not open file "/var/lib/postgresql/data/pg_wal/00000002000000000000VVRE": No such file or directory
pg_rewind: error: could not find previous WAL record at O/EFFFFB8

48

Rescuing an OIld Leader - Demo

su - postgres -c '/usr/local/bin/pg_ctl -D /var/lib/postgresql/data stop'
2025-01-22 07:53:55.836 UTC [100] LOG: received fast shutdown request

waiting for server to shut down....2025-01-22 07:53:55.838 UTC [100] LOG: aborting any active transactions

2025-01-22 07:53:55.838 UTC [126] FATAL: terminating connection due to administrator command

2025-01-22 07:53:55.842 UTC [100] LOG: background worker "logical replication launcher" (PID 106) exited with exit code 1

2025-01-22 07:53:55.843 UTC [101] LOG: shutting down

2025-01-22 07:53:55.844 UTC [101] LOG: checkpoint starting: shutdown immediate

2025-01-22 07:53:55.878 UTC [101] LOG: checkpoint complete: wrote 3813 buffers (23.3%); © WAL file(s) added, © removed, O recycled; write=0.013 s, sync=0.016
s, total=0.036 s; sync files=28, longest=0.014 s, average=0.001 s; distance=133275 kB, estimate=133275 kB; 1lsn=0/C226E88, redo 1lsn=0/C226E88

2025-01-22 07:53:55.885 UTC [100] LOG: database system is shut down

done

server stopped

su - postgres -c 'pg_rewind -D /var/lib/postgresql/data —-source-server=host=pg-green -P'
pg_rewind: connected to server
pg_rewind: servers diverged at WAL location ©0/ADC5450 on timeline 1
pg_rewind: rewinding from last common checkpoint at 0/407B948 on timeline 1
pg_rewind: reading source file list
pg_rewind: reading target file list
pg_rewind: reading WAL in target
pg_rewind: need to copy 238 MB (total source directory size is 270 MB)
243961/243961 kB (100%) copied
pg_rewind: creating backup label and updating control file
pg_rewind: syncing target data directory
pg_rewind: Done!

1s /var/lib/postgresqgl/data/

PG_VERSION pg_ident.conf

backup_label

backup_label.old postgresql.auto.conf
pg_hba.conf postgresql.conf

PG Instance Keeps Same Config After a VM/Pod Restart

- It might continue serving as
Leader even another one was
already selected

- It might continue to follow
previous Leader who has
changed since

No good solution without additional
tools, some other process needs to
check who should be the leader and
react to it.

Patroni

- Patroni process is wrapping PG instance
and manages its lifecycle fully

CloudNativePG

- Operator starts first and decides what to
do and how to start/kill Pods

- Postgres Instance manager process wraps
PG instance inside the Pod

50

Source of Truth (DCS) is Lost / Unable to Write

- Source of Truth will fail sometimes
- Trade-off
- Either be safe (all nodes as
Replicas)
- or keep the current state
(might lead to split brain)

Practical example: maintenance on etcd
for Patroni / Kubernetes cluster

Patroni

Failsafe DCS Mode

CloudNativePG

Not your problem - without kube-apiserver
you can't make any changes to Pods
anyway

Leader election for Controller

51

Is the Leader healthy? Can we detect a problem fast?

Low level
- |Is the port opened
- Can we login
- VM overloaded
- Out of disk space

But also be tolerant to glitches

Patroni

DCS Lock
Watchdog

CloudNativePG

Kubernetes Pod probes
Controller

52

Poor Clients

With each Leader switch, the clients needs to reconnect
Good support in libpg, however not with all drivers
Typically a problem fencing

Many options, no single winner
haproxy
pgbouncer
Kubernetes networking

53

Key Takeaway

- You have a good failover plan

- You have tested your backups & disaster-recovery plan

- You have a good monitoring, so the replicas are healthy

- You can was up any time and instantly be focused 100%

- You don't do any mistakes

- And you execute the failover perfectly with downtime <100min
- And you execute the failover perfectly with downtime <10min

- And you execute the failover perfectly with downtime <1min

Less absurd

More absurd

54

Key Takeaway

Just don't manage PG cluster on you own, use a proven tool.

PATRONI

Apologies, Patroni logo might be incorrect

55

That's all | had...

GitHub Repo

56

