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Why did the SQL query love 

window functions?

Because they always kept things 

in "order" 

while staying "partitioned"!
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Allow calculations across a result set
without collapsing rows.

What are analytical functions?

Enable operations like rankings, running
totals, and moving averages.
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Modern alternative to aggregates.

Why are they important?

Solve complex SQL problems efficiently.

Key to optimising performance in PostgreSQL.
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History 

of analytical functions
Oracle 8i in 1999

SQL-1999 standard (SQL3)
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Version 8.4 (2009): Initial support for
window functions.

PostgreSQL Milestones

Enhanced functionality: Advanced ranking
and value-based operations
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Purpose 

of analytical functions
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RANKING (RANK, DENSE_RANK, ROW_NUMBER)

Key use cases:

COMPARING BY OFFSET (neighbouring elements
and boundaries)

AGGREGATION (sum and average)

ROLLING AGGREGATES (sum and average in
dynamics)
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Core syntax:
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Why analytical

functions are

underutilised
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Our goal today:

Highlight practical examples.

Show the efficiency of PostgreSQL’s engine.
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Engine optimised for window functions.

PostgreSQL Efficiency:

Proper indexing further enhances
performance.
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Theoretical introduction

to analytical functions
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PARTITION BY: Group data into subsets.

Key Components of the 
OVER() Clause:

Frames: Refine the range of rows for
calculations.

ORDER BY: Define sorting within the
partition
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row_number() - assigns a unique sequential
number to each row

Ranking functions:

rank() - assigns a rank to each row with possible
gaps
dense_rank() - assigns a rank to each row

ntile() - devides rows into n groups and assigns
a group number to each row, starting from 1
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Offset functions:

lag(v,  n) - value n rows behind

lead (v,  n) - value n rows ahead

first_value (v) - value from the first frame row

last_value (v) - value from the last frame row
nth_value (v, n) - value from the n-th row
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max(v) - maximum partition/frame value

Aggregation functions:

min(v) - minimum partition/frame value

avg(v) - average partition/frame value

count(v) - partition/frame row count

sum(v) - partition/frame total
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Statistics functions:

cume_dist() - cumulative distributrion

percent_rank() - relative rank

percentile_disc(n) - discrete percentile

percentile_cont (n) - continuous percentile
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In general defined as:

Frame:

Default frame:
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Only supported by some functions:

Frames:

offset functions: first_value, last_value, nth_value

all aggregation functions

For other functions - frame = partition
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Frame type:
rows - frames work with individual records

groups - frames work with groups of records with
the  same ordering value
range - frames work with groups of records whose
order by column value falls within the specified
range
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unbounded preceding - from the partition
boundary

Frame boundaries:

unbounded following - to the partition
boundary

N preceding

current row - current record

N following
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unbounded preceding/following:
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current row :
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N-preceding/N-following :
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exclude no others - default - don´t exclude
anything

EXCLUDE:

exclude ties - keep the current record but
exclude equal to it

exclude current row

exclude group - exclude current record and all
equal to it
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FILTER:

to filter a specific window frame

alternative: CASE - more flexible
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When to replace

aggregate functions 
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Collapse rows, losing granularity.

Limitations of aggregate
functions:

Cannot combine summary and detailed
data.
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Practical examples of

query optimisation 
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Resources:

https://antonz.org/sql-
window-functions-book/

https://antonz.org/sql-window-functions-book/
https://antonz.org/sql-window-functions-book/
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