
ANALYTICAL FUNCTIONS
IN POSTGRESQL:

MODERN ALTERNATIVE
TO AGGREGATES

BAREMON
Jan Suchánek

P2D2 2025

Jan Suchánek

More than 25 years of experience in database
services, data governance and cloud
innovation

Head of data transformation and co-founder of
Baremon

jan.suchanek@baremon.eu
MAIL

www.baremon.eu
WEB

X
@jsuchanekcz

http://www.baremon.eu/

BAREMON

Why did the SQL query love

window functions?

Because they always kept things

in "order"

while staying "partitioned"!

BAREMON

Agenda:
INTRODUCTION

HISTORY OF ANALYTICAL FUNCTIONS

PURPOSE OF ANALYTICAL FUNCTIONS

WHY ANALYTICAL FUNCTIONS ARE UNDERUTILISED

THEORETICAL INTRODUCTION TO ANALYTICAL FUNCTIONS

WHEN TO REPLACE AGGREGATE FUNCTIONS

PRACTICAL EXAMPLES OF QUERY OPTIMISATION

BAREMON

Allow calculations across a result set
without collapsing rows.

What are analytical functions?

Enable operations like rankings, running
totals, and moving averages.

BAREMON

Modern alternative to aggregates.

Why are they important?

Solve complex SQL problems efficiently.

Key to optimising performance in PostgreSQL.

BAREMON

History

of analytical functions
Oracle 8i in 1999

SQL-1999 standard (SQL3)

BAREMON

Version 8.4 (2009): Initial support for
window functions.

PostgreSQL Milestones

Enhanced functionality: Advanced ranking
and value-based operations

BAREMON

Purpose

of analytical functions

BAREMON

RANKING (RANK, DENSE_RANK, ROW_NUMBER)

Key use cases:

COMPARING BY OFFSET (neighbouring elements
and boundaries)

AGGREGATION (sum and average)

ROLLING AGGREGATES (sum and average in
dynamics)

BAREMON

Core syntax:

BAREMON

Why analytical

functions are

underutilised

BAREMON

Our goal today:

Highlight practical examples.

Show the efficiency of PostgreSQL’s engine.

BAREMON

Engine optimised for window functions.

PostgreSQL Efficiency:

Proper indexing further enhances
performance.

BAREMON

Theoretical introduction

to analytical functions

BAREMON

PARTITION BY: Group data into subsets.

Key Components of the
OVER() Clause:

Frames: Refine the range of rows for
calculations.

ORDER BY: Define sorting within the
partition

BAREMON

row_number() - assigns a unique sequential
number to each row

Ranking functions:

rank() - assigns a rank to each row with possible
gaps
dense_rank() - assigns a rank to each row

ntile() - devides rows into n groups and assigns
a group number to each row, starting from 1

BAREMON

Offset functions:

lag(v, n) - value n rows behind

lead (v, n) - value n rows ahead

first_value (v) - value from the first frame row

last_value (v) - value from the last frame row
nth_value (v, n) - value from the n-th row

BAREMON

max(v) - maximum partition/frame value

Aggregation functions:

min(v) - minimum partition/frame value

avg(v) - average partition/frame value

count(v) - partition/frame row count

sum(v) - partition/frame total

BAREMON

Statistics functions:

cume_dist() - cumulative distributrion

percent_rank() - relative rank

percentile_disc(n) - discrete percentile

percentile_cont (n) - continuous percentile

BAREMON

In general defined as:

Frame:

Default frame:

BAREMON

Only supported by some functions:

Frames:

offset functions: first_value, last_value, nth_value

all aggregation functions

For other functions - frame = partition

BAREMON

Frame type:
rows - frames work with individual records

groups - frames work with groups of records with
the same ordering value
range - frames work with groups of records whose
order by column value falls within the specified
range

BAREMON

unbounded preceding - from the partition
boundary

Frame boundaries:

unbounded following - to the partition
boundary

N preceding

current row - current record

N following

BAREMON

unbounded preceding/following:

BAREMON

current row :

BAREMON

N-preceding/N-following :

BAREMON

exclude no others - default - don´t exclude
anything

EXCLUDE:

exclude ties - keep the current record but
exclude equal to it

exclude current row

exclude group - exclude current record and all
equal to it

BAREMON

FILTER:

to filter a specific window frame

alternative: CASE - more flexible

BAREMON

When to replace

aggregate functions

BAREMON

Collapse rows, losing granularity.

Limitations of aggregate
functions:

Cannot combine summary and detailed
data.

BAREMON

Practical examples of

query optimisation

BAREMON

Resources:

https://antonz.org/sql-
window-functions-book/

https://antonz.org/sql-window-functions-book/
https://antonz.org/sql-window-functions-book/

BAREMON

BAREMON

ANALYTICAL FUNCTIONS IN POSTGRESQL:
MODERN ALTERNATIVE TO AGGREGATES

Jan Suchánek
Barbora Linhartová

Thank you

