JUST DON'T DO IT, POSTGRESQL IN KUBERNETES

JAN KARREMANS CHIEF DATA ARCHITECT

THE MOST TRANSFORMATIVE TECH SINCE LINUX.

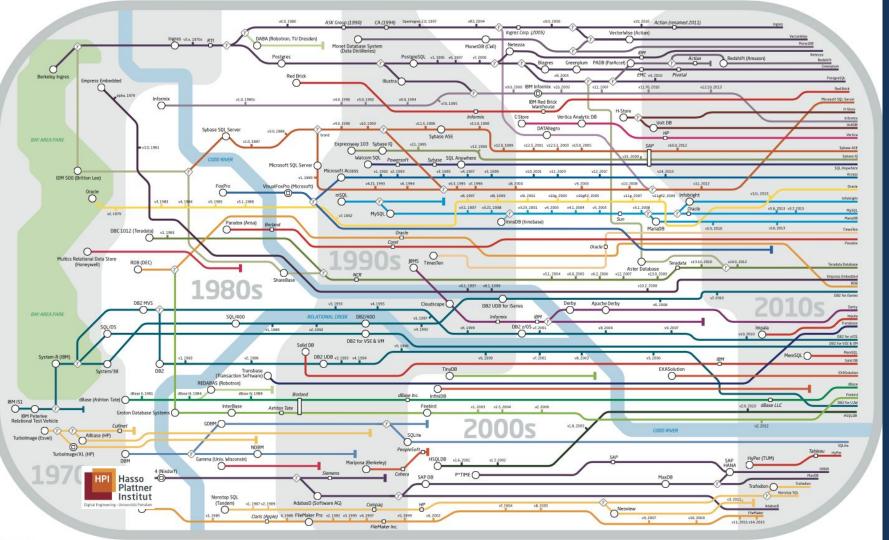
MARC LINSTER, POSTGRESQL FELLOW

PostgreSQL Cloud TOO MUCH TO SAY, TOO LITTLE TIME

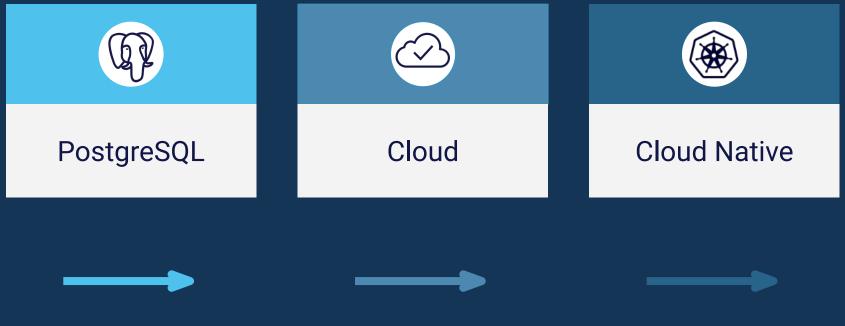
Jan Karremans

Techie in Sales

30 years in databases


3 years in Kubernetes

On a mission



LAY OF THE LAND

APPLICATION DEVELOPMENT

MONOLITHIC TO AGILE

Cloud changes much more than just your deployment method

ENABLING SPEED AND INNOVATION FROM BUZZWORD BINGO TO BUSINESS BENEFIT

Agile

Ensure development and deployment teams can (re)deploy and test quickly and seamlessly

Microservices

Transform traditional monolithic applications to cloud native, microservices based solutions

DevOps

Development and deployment of applications are no longer disjointed operations but fully integrated

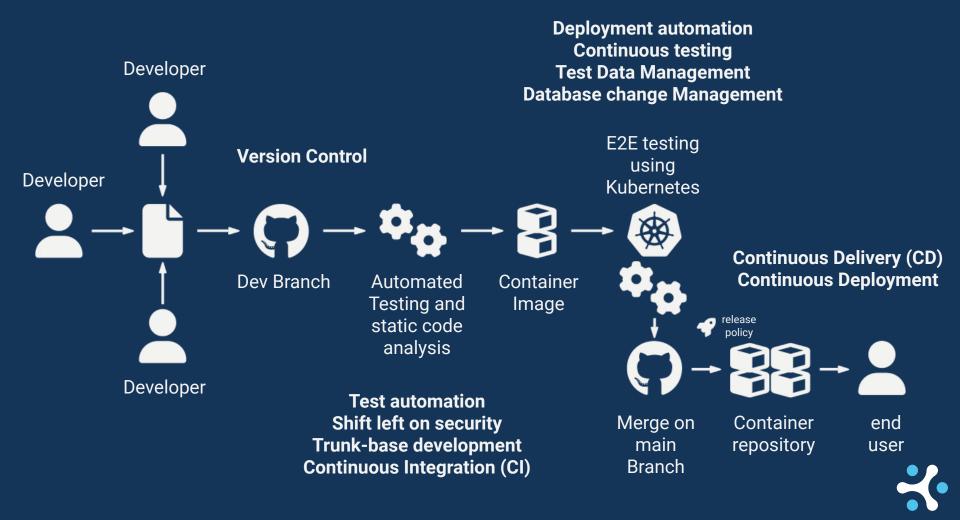
CI/CD

New value for your solution, released quickly and securely in short and safe deployment cycles

WHY DEVOPS

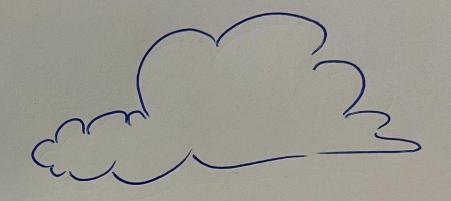
INTRODUCE DORA

DevOps Research and Assessment


The longest running academically rigorous research investigation of its kind

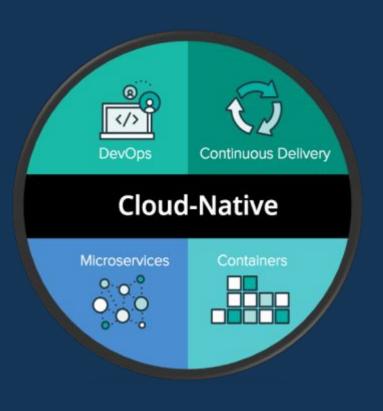
Providing an independent view into the practices and capabilities

That drive high performance in technology delivery and organizational outcomes



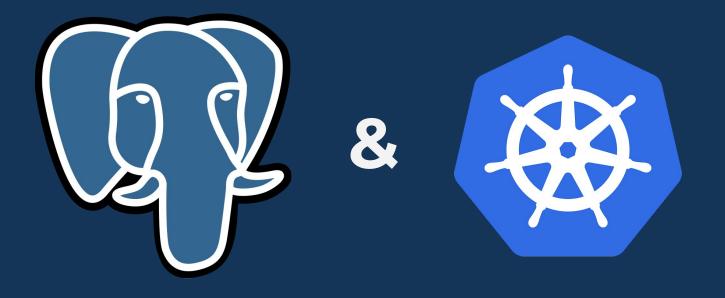
FROM AVAILABILITY TO RELIABILITY It is all about the metrics

DADDY, WHAT ARE CLOUDS MADE OF 2


LINUX SERVERS, MOSTLY

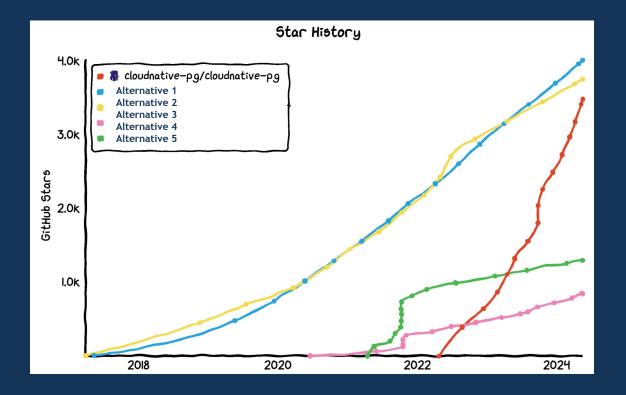
Cloud native technologies empower organizations to **build** and **run scalable applications** in modern, **dynamic environments** such as public, private, and hybrid **clouds**. Containers, service meshes, microservices, immutable infrastructure, and declarative APIs exemplify this approach.

These techniques enable **loosely coupled systems** that are **resilient, manageable, and observable**. Combined with robust automation, they allow engineers to make **high-impact changes frequently** and **predictably with minimal toil**.

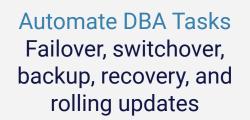

The Cloud Native Computing Foundation seeks to drive adoption of this paradigm by fostering and sustaining **an ecosystem of open source**, **vendor-neutral projects**. We democratize state-of-the-art patterns to make these innovations **accessible for everyone**.

BRINGING IT TOGETHER

VERY POWERFUL COMMUNITIES TOGETHER



RUN POSTGRES, THE KUBERNETES WAY


THE LAY OF THE LAND

LAY OF THE LAND

Deploy anywhere Lightweight, immutable Postgres containers

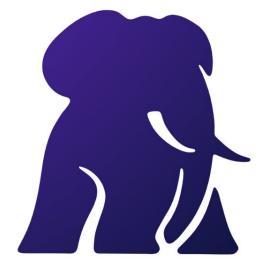
Avoid lock-in Operator and images are portable to any cloud

ABOUT CLOUD NATIVE PG

- Kubernetes operator
- Day 1 & 2 operations of a PostgreSQL database
 - In traditional environments usually reserved to humans
- Open source
 - $\circ~$ Originally created and developed by EDB
 - Vendor neutral/openly governed community
 - Apache 2.0 license
 - $\circ~$ Submitted to the CNCF Sandbox
- Production ready
 - BigAnimal EDB's DBaaS
 - Several EDB customers
- Latest minor version is 1.15

Blog

Support End Users


🖓 Star 3,458 👬 🎔 🕨

Run PostgreSQL. The Kubernetes way.

CloudNativePG is the Kubernetes operator that covers the full lifecycle of a highly available PostgreSQL database cluster with a primary/standby architecture, using native streaming replication.

View on GitHub

ot

cloudnative-pg.io

he steps that a r would do to deploy Postgres database

Data persistence

It doesn't rely on statefulsets and uses its own way to manage persistent volume claims where the

Designed for Kubernetes

It's entirely declarative, and directly integrates with the Kubernetes API

DAY 0 OPERATIONS

PLAN YOUR K8S INFRASTRUCTURE FOR POSTGRESQL WORKLOADS

• First impressions last

• K8s infrastructure often planned for stateless-only workloads

Common choice: database outside Kubernetes - DBaaS

• You can run databases inside Kubernetes

- Fully leverage devops
- Shared/Shared nothing architectures
- $\circ~$ Storage sector in K8s is growing fast
- Choose your storage wisely
 - Like you are used to in VMs and bare metal

INSTALLING CLOUD NATIVE PG

kubectl apply -f \

https://raw.githubusercontent.com/cloudnative-pg/cloudnative-pg/main/releases/cnpg-1.19.1.yaml

Declarative configuration via YAML manifest

DAY 1 OPERATIONS

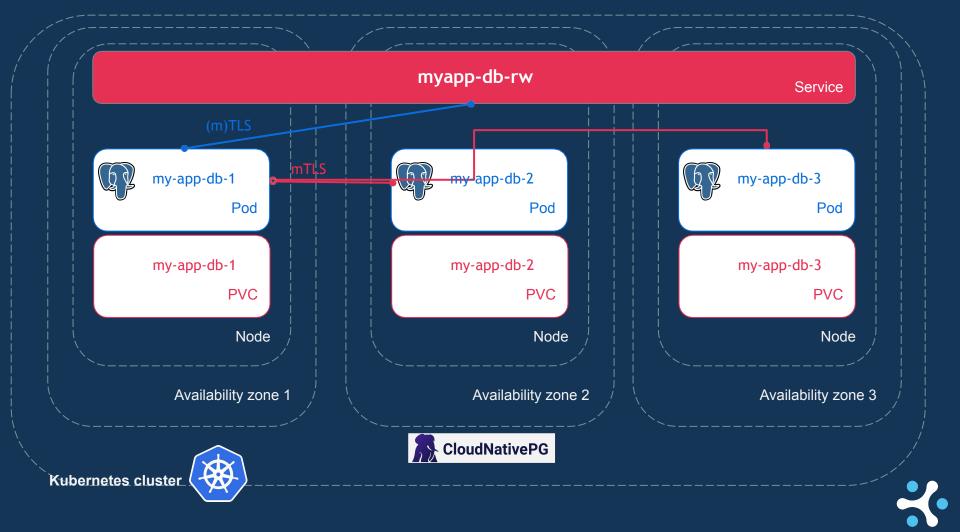
OBJECTIVE FOR DAY 0 IS A 3 NODE POSTGRES CLUSTER

- Install the latest minor version of PostgreSQL
- Create a new PostgreSQL Cluster
- One primary and two standby servers
- mTLS authentication with replicas
- 4GB of RAM, 8 cores, 50Gb of storage
- 1GB of shared buffers
- A way to access the primary via network
- A user for the application
- A database for the application

MYAPP-DB.YAML

apiVersion: postgresql.cnpg.io/v1

1	Kind: Cluster
2	metadata:
3	name: myapp-db
4	spec:
5	instances: 3
6	postgresql:
7	parameters:
8	Shared_buffers: "1GB"
9	resources:
10	requests:
11	memory: "4 <mark>Gi</mark> "
12	cpu: <mark>8</mark>
13	limits: memory: "4Gi" cpu:
14	storage:
15	size: <mark>50Gi</mark>


8

....

HOW TO DEPLOY THE CLUSTER

1 kubectl apply -f myapp-db.yaml

THERE'S MORE

- A service to access read-only replicas (myapp-db-ro)
- A service to access any instance for reads (myapp-db-r)
- Many other Kubernetes objects are created:
 - \circ Secrets
 - ConfigMaps
 - \circ Roles
 - \circ RoleBindings
 - ServiceAccounts

o ...

Convention over configuration

POSTGRESQL CONFIGURATION

- Most GUCs are configurable
 - .postgresql.parameters section
 - Some cannot be changed (e.g. log_destination)
 - Some have defaults
- Host-Based Authentication can be configured
 - .postgresql.pg_hba section
 - By default:
 - Requires TLS authentication for streaming replicas
 - Fallback sets sha-256/md5 authentication

POSTGRESQL CONFIGURATION

- CloudNativePG supports changes of configuration
 - \circ Reload
 - $\circ~$ Rolling updates if restart is required
 - $\circ~$ Update of standby sensitive parameters

DAY 2 OPERATIONS

THE ROLE OF A KUBERNETES OPERATOR FOR POSTGRES

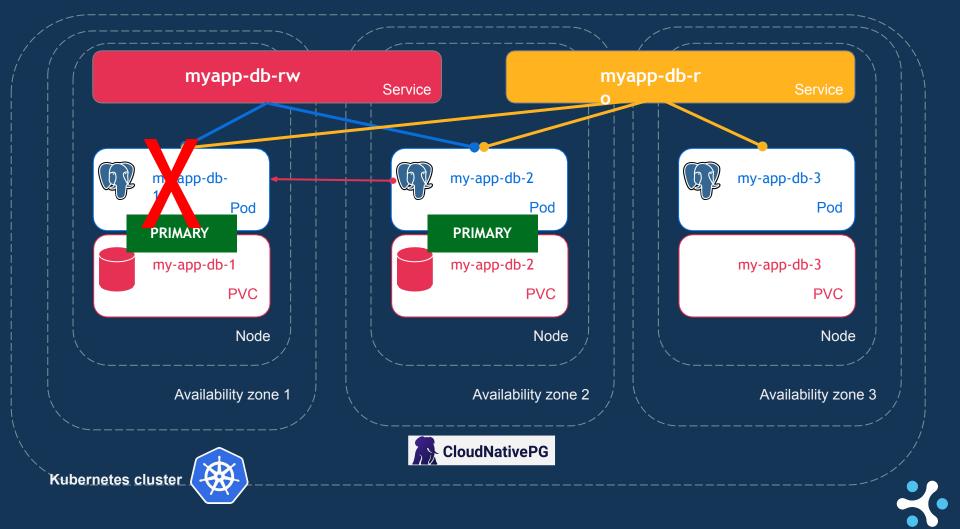
- Simulate the work of a human DBA
- Do it in a programmatic and automated way
- Extend the Kubernetes API server
 - The only authority for the whole infrastructure
 - $\circ~$ Single source of truth of the status of the infrastructure
 - Current status
 - Desired status

ROLLING UPDATES

- Update of a deployment with ~zero downtime
 - Standby servers are updated first
 - Then the primary:
 - supervised / unsupervised
 - switchover / restart
- When they are triggered:
 - Security update of Postgres images
 - Minor update of PostgreSQL
 - Configuration changes when restart is required
 - Update of the operator
 - Unless in-place upgrade is enabled

BACKUP AND RECOVERY

- Continuous physical backup on "backup object stores"
 - Scheduled and on-demand base backups
 - Continuous WAL archiving (including parallel)
- Support for recovery window retention policies (e.g. 30 days)
- Recovery means creating a new cluster starting from a "recovery object store"
 - Then pull WAL files (including in parallel) and replay them
 Full (End of the WAL) or PITR
- Both rely on Barman Cloud technology
 - AWS S3
 - Azure Storage compatible
 - Google Cloud Storage


SYNCHRONOUS REPLICATION

- Quorum-based synchronous streaming replication
- Controlled by two options:
 - o minSyncReplicas
 - o maxSyncReplicas
- CloudNativePG takes care of synchronous_standby_names
 - \circ ANY q (pod1, pod2, ...)
 - Where:
 - 1 <= minSyncReplicas <= q <= maxSyncReplicas <= readyReplicas</pre>
 - pod1, pod2, ... is the list of all PostgreSQL pods in the cluster

MONITORING

- Native support for Prometheus
- Built-in metrics at the operator level
- Built-in metrics at the Postgres instance level
- Customizable metrics at the Postgres instance level
 - Via ConfigMap(s) and/or Secret(s)
 - Syntax compatible with the PostgreSQL Prometheus Exporter
 - Auto-discovery of databases
 - $\circ\;$ Queries are:
 - Transactionally atomic and read-only
 - Executed with the pg_monitor role
 - Executed with application_name set to cnp_metrics_exporter
- Support for pg_stat_statements and auto_explain

FINAL REMARKS

RESHAPING THE DBA ROLE

- Most infrastructure related problems are automated
- You as a DBA are crucial in the organization
 - Leverage skills and experience from traditional environments
 - Subject Matter Expert of PostgreSQL in DevOps teams
- Unlearn to learn
- Protect Postgres, from Day 0:
 - Infrastructure: choose the right storage!
 - Application: model the database with developers!
- Examples of day 2 operations:
 - Infrastructure: monitoring, alerting, backup verification
 - $\circ\;$ Application: query optimization, index optimization, data modeling

JOIN US!

- We adopt the CNCF code of conduct
- Simple governance model based on maintainers for the initial phase
- Public roadmap using GitHub Projects beta
- Start from the CONTRIBUTING.md file
 - GitHub issues and discussions primarily
 - Slack channel
 - Participate to the biweekly developer meetings
- Special instructions for source code contributions
 - Work in progress
 - $\circ~$ Setup of the dev environment
 - $\circ~$ Setup of the test environment to run E2E tests with kind and k3d
 - Developer Certificate of Origin (DCO) required

WE ARE HIRING!

CHECK OUT OUR JOB OPENINGS:

https://www.cybertec-postgresql.com/ en/jobs-and-opportunities/

QUESTIONS, ANYONE?

GET IN TOUCH

WE'D LOVE TO HEAR YOUR THOUGHTS

EMAIL

jan.karremans@cybertec-postgresql.com

PHONE +31 6 1638 9607

WEB

www.cybertec-postgresql.com

*****•