
D
ra
ftGIN,

BTREE_GIN,

GIST and

BTREE indexes

on JSONB data

Josef Machytka <josef.machytka@netapp.com>
NetApp (Instaclustr-Credativ part)

2024-06-05 - Prague PostgreSQL Developers Day 2024

© 2024 Netapp, Inc. Alle Rechte vorbehalten.

D
ra
ft

Josef Machytka

• Professional Service Consultant - PostgreSQL specialist at NetApp (Instaclustr-Credativ part).

• Credativ - support for open source: PostgreSQL, Patroni, pgBackRest, Kubernetes pg ops, monitoring.

• Instaclustr - PostgreSQL/Cassandra/Kafka cloud solutions.

• NetApp - enterprise-grade cloud storage with protection against ransomware attacks, with a focus on AI.

• 30+ years of experience with different databases.

• PostgreSQL (11y), BigQuery (7y), Oracle (15y), MySQL (12y), Elasticsearch (5y), MS SQL (5y).

• DB admin/developer, Data ingestion platforms, Data analysis, Business intelligence, Monitoring.

• Originally from Czechia, currently living in Berlin for 11 years.

• LinkedIn: www.linkedin.com/in/josef-machytka.

1 © 2024 Netapp, Inc. Alle Rechte vorbehalten.

D
ra
ft

Table of contents

• Problems with implementation

• What was tested

• GIN indexes

• BTREE_GIN extension

• GIST indexes

• BTREE indexes

• TOAST tables

• Decomposition of JSON data

• Statistics

2 © 2024 Netapp, Inc. Alle Rechte vorbehalten.

D
ra
ft

Problems with

implementation

3 © 2024 Netapp, Inc. Alle Rechte vorbehalten.

D
ra
ft

JSON - light and dark side of the force

• Frontend and backend developers love the flexibility of JSON.

• JSON minimizes the need for app changes due to schema changes.

• IoT devices use JSON - W3C Web of Things Working Group standardized JSON for IoT.

• Data quality checks - absolute freedom might be a big challenge.

• Problems with data cleansing and transformation.

• Business intelligence, ML, and reporting need structured and standardized data.

• But the full decomposition of JSON can be a complex and painful task.

• Databases must handle JSON data, there is no escape.

4 © 2024 Netapp, Inc. Alle Rechte vorbehalten.

D
ra
ft

Clients struggle with implementing JSONB

• Articles are often too shallow, repeating documentation.

• Very trivial examples - create a table, insert 3 rows, try explain, celebrate.

• Even ChatGPT-4o is not helpful with deeper and more complicated topics.

• Clients develop with small inadequate datasets.

• Tests are often too simple, just guessing production use cases.

• PostgreSQL dev instance has inadequate configuration.

• Confusion about TOAST tables, compression, and storage.

• Doubts about design - partitions vs 1 big table.

• Developers are obsessed with forcing indexes.

5 © 2024 Netapp, Inc. Alle Rechte vorbehalten.

D
ra
ft

What was tested

6 © 2024 Netapp, Inc. Alle Rechte vorbehalten.

D
ra
ft

What was tested

• Different types of indexes for different use cases.

• Different compression and storage methods.

• Memory settings - work_mem, shared_buffers.

• Performance under different loads - multiple simultaneous sessions.

• One big table vs partitioned tables.

• Influence of parallelism.

• Influence of data distribution and selectivity.

• Full decomposition vs one big JSONB column.

• Deep dive into GIN index internals.

• Analysis of code - JSONB, TOAST, GIN.

7 © 2024 Netapp, Inc. Alle Rechte vorbehalten.

D
ra
ft

Dataset for tests

• GitHub Archive events - www.gharchive.org

• Separate .gz files for each hour - YYYY-MM-DD-HH24.json.gz

• One big JSONB column with all the data

CREATE TABLE github_events (
id SERIAL PRIMARY KEY NOT NULL,
jsonb_data JSONB);

8 © 2024 Netapp, Inc. Alle Rechte vorbehalten.

https://www.gharchive.org/

D
ra
ft

GitHub events - JSON record

{ "id": "26167585827",
"repo": { "id": 581592468,

"url": "https://api.github.com/repos/tiwabs/tiwabs_audio_door_tool",
"name": "tiwabs/tiwabs_audio_door_tool" },

"type": "PushEvent",
"actor": { "id": 48737497,

"url": "https://api.github.com/users/tiwabs",
"login": "tiwabs",
"avatar_url": "https://avatars.githubusercontent.com/u/48737497?",
"gravatar_id": "",
"display_login": "tiwabs" },

"public": true,
"payload": {"ref": "refs/heads/master",

"head": "3ca247941f269bcedeb17e5b12e9b3b74b1c4da2",
"size": 1,
"before": "0dd5471667b12084b8fc88b1bca299780382d50a",
"commits":

[
{ "sha": "3ca247941f269bcedeb17e5b12e9b3b74b1c4da2",

"url": "https://api.github.com/repos/tiwabs/....12e9b3b74b1c4da2",
"author": { "name": "Tiwabs", "email": "mrskielz@gmail.com" },
"message": "fix(export): export nametable if export succed",
"distinct": true }

],
"push_id": 12149772587,
"distinct_size": 1 },

"created_at": "2023-01-01T13:39:55Z" }

9 © 2024 Netapp, Inc. Alle Rechte vorbehalten.

D
ra
ft

GitHub events - testing details

• Tested in PostgreSQL 15 and 16.

• Python scripts for downloading, importing,

analyzing, and testing.

• Multiple local and AWS RDS testing environments.

• Different CPUs, all with 8 cores and 32 GB RAM.

• Used 1 week of data from January 2023.

• In total 17,474,101 rows.

• 3 tables, different compression methods:

• pglz: 41 GB
• lz4: 38 GB
• external storage with no compression: 98 GB

10 © 2024 Netapp, Inc. Alle Rechte vorbehalten.

D
ra
ft

Performance testing - sequential scan on the table

• Aggregation query over all

records using sequential

scan on the table, without

parallelism.

• The old compression

method, pglz, was already

slower than no compression

with 8 sessions on 8 cores.

• With 16, 32, and 64 sessions

on 8 cores, pglz became a

serious performance

bottleneck.

11 © 2024 Netapp, Inc. Alle Rechte vorbehalten.

D
ra
ft

GIN indexes

12 © 2024 Netapp, Inc. Alle Rechte vorbehalten.

D
ra
ft

GIN indexes

• GIN indexes generally showed very stable performance even under high load.

• But for their usage proper settings are crucial.

• Set Shared_buffers to 25% of RAM and effective_cache_size to around 50% of RAM.

• GIN indexes do not support parallelism, neither for creation nor for usage.

• Parallelism can be a significant factor in using or not using GIN indexes.

• If parallel workers are available, the planner can choose parallel sequential scan on the table.

• If all parallel workers are in use, the planner uses GIN indexes for new queries.

• Set Max_parallel_workers_per_gather = 0 at least for the query.

13 © 2024 Netapp, Inc. Alle Rechte vorbehalten.

D
ra
ft

GIN indexes - parameters tuning

• SSD: random_page_cost = 1.1, effective_io_concurrency = 200.

• Set random_page_costs <= seq_page_cost (=1) if the database is fully cached in memory.

• Different values of work_mem had minimal impact if the query used GIN index scan.

• PostgreSQL code: src/backend/optimizer/path/costsize.c

• cpu_tuple_cost, cpu_index_tuple_cost, cpu_operator_cost ???

• parallel_setup_cost, parallel_tuple_cost ???

• The code says ”measured on an arbitrary scale”.

• Especially cpu_tuple_cost is used incredibly often in the code.

• Its value influences the planner’s decisions significantly.

14 © 2024 Netapp, Inc. Alle Rechte vorbehalten.

D
ra
ft

GIN indexes

• It can take hours to create a new GIN index on the whole column with existing data.

• Setting maintenance_work_mem has a rather small impact on the speed of creating a GIN index.

• Disk IO is the main factor affecting the speed of creating a GIN index.

• Updates of GIN indexes become significantly slower as the table size grows.

• The index is rebuilt when the gin_pending_list_limit is reached or during vacuuming.

• Default value of gin_pending_list_limit is 4MB = 512 data pages.

• The size of the table matters.

• The speed of inserting rows per second can decrease by up to 50%.

• Partitioning can help significantly. However, disk IO is again the main factor.

15 © 2024 Netapp, Inc. Alle Rechte vorbehalten.

D
ra
ft

GIN indexes - speed of inserts - one big table

16 © 2024 Netapp, Inc. Alle Rechte vorbehalten.

D
ra
ft

GIN indexes - speed of inserts - partitions

17 © 2024 Netapp, Inc. Alle Rechte vorbehalten.

D
ra
ft

Gin Indexes inspection - pending pages and tuples

• We can use extensions to get some deeper

information about GIN indexes

• pgstattuple:

• pgstatginindex()

• pageinspect:

• gin_page_opaque_info() - basic info about page
• gin_metapage_info() - details for metapage
• gin_leafpage_items() - details for leaf page

SELECT * FROM pgstatginindex('index_name');

version | pending_pages | pending_tuples
---------+---------------+----------------

2 | 414 | 1853

SELECT *
FROM gin_metapage_info(

get_raw_page('index_name', 0))\gx

pending_head : 292675
pending_tail : 339992
tail_free_size : 220
n_pending_pages : 414
n_pending_tuples : 1853
n_total_pages : 339200
n_entry_pages : 312283
n_data_pages : 24533
n_entries : 52572205
version : 2

--> but before VACUUM these
values are only estimates!

18 © 2024 Netapp, Inc. Alle Rechte vorbehalten.

D
ra
ft

Gin Indexes inspection - deeper dive into pages stats

-- How to get proper count of pages?

pg_class: 339986, metapage: 339200 - both are estimates, just taken differently

-- Let's calculate the proper count of pages from the size of data files

SELECT pg_relation_size('index_name') / 8192;
-> 357105 pages

-- Now we can get statistics about GIN index pages

WITH pages AS (
SELECT *
FROM generate_series(0,

(SELECT pg_relation_size('index_name') / 8192) -1) as pagenum)
SELECT

(SELECT flags
FROM gin_page_opaque_info(

get_raw_page('index_name', pagenum))) as flags,
count(*) as pages

FROM pages GROUP BY flags ORDER BY flags;

19 © 2024 Netapp, Inc. Alle Rechte vorbehalten.

D
ra
ft

GIN indexes - rebuild of index during insertion of data

20 © 2024 Netapp, Inc. Alle Rechte vorbehalten.

D
ra
ft

GIN indexes - equality of value - operators @? and @@

• GIN index with jsonb_ops operator class is the most versatile but also the biggest.

• It allows searching for equality of values on multiple unknown levels of keys.

• The @? and @@ operators can be used with * and ** wildcards.

• Example: WHERE jsonb_data @@ ’$.** == ”python3” ’

• The size of the jsonb_ops GIN index on the whole column can reach 80% of the table size.

• The operator class jsonb_path_ops works only with fully known jsonpath.

• It allows searching for equality of values on multiple known levels of keys.

• The @? and @@ operators cannot use wildcards, the jsonpath must be known.

• Example: WHERE jsonb_data @@ ’$.payload.pull_request.head.repo.topics[*] == ”python3”’

• The GIN index with jsonb_path_ops on the whole column can reach 30% of the table size.

21 © 2024 Netapp, Inc. Alle Rechte vorbehalten.

D
ra
ft

GIN indexes - operator @>

• If the second object is contained in the first one - an exact match of the key(s) and value(s).

• Works with both operator classes.

• Works for nested objects and arrays.

• Allows searching for equality of multiple values in one condition.

• Searching for values from lists of values - events from specific users, a specific repository.

• Run times are in dozens or hundreds of milliseconds.

• Very stable performance even with multiple sessions running in parallel.

• Limitation - the path must be known.

• This will find data: WHERE jsonb_data @> ’{”payload”:{”commits”:[{”author”:{”name”: ”Jane Joy”}}]}}’

• This will not find: WHERE jsonb_data @> ’{”commits”:[{”author”:{”name”: ”Jane Joy”}}]}’

22 © 2024 Netapp, Inc. Alle Rechte vorbehalten.

D
ra
ft

GIN indexes - other operators

• Operators ? , ?| , and ?& .

• They are used to look for the existence of key(s) on the top level.

• These operators only work with the jsonb_ops operator class.

• The usage of the GIN index depends on statistics.

• If a key is present in the majority of records, the GIN index is not used.

• If the table is very small, the GIN index is not used.

• The GIN index is only used for keys that are not present in the majority of records.

• Useful for a very dynamic schema or a table that stores many different JSON datasets.

23 © 2024 Netapp, Inc. Alle Rechte vorbehalten.

D
ra
ft

GIN indexes - SQL\JSON operators and methods

• SQL\JSON contains multiple amazing methods, but GIN index does not work for them.

• like_regex - tests if the string value returned by jsonpath matches a regular expression:

WHERE jsonb_data @? ’$.description ? (@ like_regex ”.*Michigan.*”)’

• starts with - tests if the string value returned by jsonpath starts with a specific string:

WHERE jsonb_data @? ’$.laureates[*].firstname ? (@ starts with ”Jo”)’

• exists - tests if a key exists in the JSONB schema at a given level:

WHERE jsonb_data @? ’$.laureates[*].firstname ? (exists (@))’

• The PostgreSQL community should consider creating indexes for these operators.

24 © 2024 Netapp, Inc. Alle Rechte vorbehalten.

D
ra
ft

GIN indexes - full text search

• GIN index with tsvector_ops operator class allows full text search.

• The function jsonb_to_tsvector converts JSONB data into tsvector.

• Example: WHERE jsonb_to_tsvector(’english’, jsonb_data, ’”string”’) @@ to_tsquery(’search_string’)

• Full text search works for equality of words/synonyms.

• You can combine words using AND/OR.

• The tsvector_ops index on the whole column can be larger than the table.

• It only makes sense to create an index on free text columns.

• It speeds up search by at least 100 times.

• Performance is very stable under high load.

25 © 2024 Netapp, Inc. Alle Rechte vorbehalten.

D
ra
ft

GIN indexes - full text search - commit messages

26 © 2024 Netapp, Inc. Alle Rechte vorbehalten.

D
ra
ft

GIN indexes - LIKE search

• Gin_trgm_ops operator class allows string search using LIKE.

• The index over the whole column does not distinguish keys and values.

• It still performs an equality search behind the scenes - equality of trigrams.

• Creating an index on free text columns is the only scenario where it makes sense.

• The size of the gin_trgm_ops GIN index on the whole column can reach 50% of the table size.

• It significantly speeds up search, even up to 1000x.

• The performance is very stable under high load.

27 © 2024 Netapp, Inc. Alle Rechte vorbehalten.

D
ra
ft

GIN indexes - partitions

• Partitioned tables have multiple advantages over one big table.

• Loading data into partitioned tables is faster.

• Updates of GIN indexes on partitions are faster.

• The sum of sizes of GIN indexes on partitions is always bigger than the GIN index on the whole table.

• Query run times using GIN indexes are faster on partitioned tables, approximately 5 times faster.

• Using a GIN index over a part of the JSONB column can be a better solution than using a GIN index on

the whole column.

28 © 2024 Netapp, Inc. Alle Rechte vorbehalten.

D
ra
ft

BTREE_GIN indexes

29 © 2024 Netapp, Inc. Alle Rechte vorbehalten.

D
ra
ft

BTREE_GIN indexes

• The BTREE_GIN extension combines the BTREE and GIN indexes.

• It adds GIN operator classes with BTREE behavior.

• The BTREE text_pattern_ops does not work with BTREE_GIN indexes.

• You can use any GIN operator class with the BTREE_GIN index.

• The BTREE_GIN index can have multiple columns.

• It will optimize the search for any combination of these columns.

• The order of columns does not seem to be important.

• The runtime with the BTREE_GIN index was better than with the GIN index + filter search.

• The run times of the tested use cases were in the range of hundreds of milliseconds.

• The performance was stable even with many parallel sessions.

30 © 2024 Netapp, Inc. Alle Rechte vorbehalten.

D
ra
ft

GIST indexes

31 © 2024 Netapp, Inc. Alle Rechte vorbehalten.

D
ra
ft

GIST indexes

• For indexing geo data, you need GIST indexes.

• Most commonly in GeoJSON format.

• Usually - Type (Point), coordinates [longitude (+/- 0-180), latitude (+/- 0-90)].

-- NASA meteorites dataset

{ "id": "1",
"fall": "Fell",
"mass": "21",
"name": "Aachen",
"year": "1880-01-01T00:00:00.000",
"reclat": "50.775000",
"reclong": "6.083330",
"nametype": "Valid",
"recclass": "L5",
"geolocation": {

"type": "Point",
"coordinates": [6.08333, 50.775] } }

32 © 2024 Netapp, Inc. Alle Rechte vorbehalten.

D
ra
ft

GIST indexes - PostGIS example

• Let’s create a GIST index based on GEOMETRY(point, 4326) PostGIS data type.

• EPSG code 4326 is for WGS 84 spacial reference system.

-- you can create a GIST index on a GEOMETRY column manually:

CREATE INDEX ON nasa_meteorits USING GIST(
ST_SETSRID(ST_MakePoint(

cast(jsonb_data->'geolocation'->'coordinates'->>0 as float),
cast(jsonb_data->'geolocation'->'coordinates'->>1 as float)), 4326));

-- or use PostGIS extension function st_geomfromgeojson
-- expects a GeoJSON object as input, recognizes content automatically:
-- meteorites: { "type": "Point", "coordinates": [6.08333, 50.775] }
-- earthquakes: { "geometry": { "type": "Point", "coordinates": [-104.024, 31.646, 6.8514] }}

CREATE INDEX ON nasa_meteorits USING GIST(
ST_GeomFromGeoJSON(jsonb_data->'geolocation'));

33 © 2024 Netapp, Inc. Alle Rechte vorbehalten.

D
ra
ft

GIST indexes - BTREE_GIST extension

• The BTREE_GIST extension allows you to combine GIST and BTREE indexes.

• You cannot create a GIST index on a whole JSONB column.

• However, you can combine multiple columns into a BTREE_GIST index using different operator classes.

• The intarray extension implements the gist__int_ops and gist__intbig_ops operator classes for arrays.

• There is the gist_trgm_ops operator class for performing LIKE search over strings.

• And the tsvector_ops operator class for creating a GIST index for full-text search.

34 © 2024 Netapp, Inc. Alle Rechte vorbehalten.

D
ra
ft

GIST indexes - BTREE_GIST extension

• Earthquakes dataset - United States Geological Survey (earthquake.usgs.gov).

• GIST index on JSONB column combining multiple extracted values.

• Geolocation, magnitude as a number, place as a trigram, and magnitude type as a list of values.

• Optimizes all variants of queries using these columns.

• Quick to create - 1 minute on a 1 GB dataset. Size is 20% of the table size.

CREATE INDEX ON jsonimport USING gist (
ST_GeomFromGeoJSON(jsonb_data->'geolocation'),
((jsonb_data->'properties'->>'mag')::numeric),
(jsonb_data->'properties'->>'place') gist_trgm_ops,
(jsonb_data->'properties'->>'magType'));

35 © 2024 Netapp, Inc. Alle Rechte vorbehalten.

D
ra
ft

BTREE indexes

36 © 2024 Netapp, Inc. Alle Rechte vorbehalten.

D
ra
ft

BTREE indexes

• BTREE indexes are very small and quick, making them an ideal first choice.

• They allow parallel index build and scan.

• They can be created in minutes, even on large tables.

• BTREE indexes support equality and range queries using operators such as <, <=, =, >=, and >.

• When combined with text_pattern_ops (for each column), they can be used for prefix-LIKE queries.

• Some transformations must be encapsulated into immutable functions.

• Conditions in queries must contain the exact indexed expression.

• Partial BTREE indexes can be very useful for dynamic schemas.

• Whenever possible, use LIMIT to improve the delivery of results significantly.

37 © 2024 Netapp, Inc. Alle Rechte vorbehalten.

D
ra
ft

Sizes of indexes

38 © 2024 Netapp, Inc. Alle Rechte vorbehalten.

D
ra
ft

Summary of results - sizes of indexes

Table - lz4 TOAST compression, 17.5 M rows 38 GB

GIN index - jsonb_ops - whole JSONB column 25 GB 66 %

GIN index - jsonb_path_ops - whole JSONB column 16 GB 42 %

GIN index - gin_trgm_ops - whole JSONB column 16 GB 42 %

GIN index - tsvector_ops - jsonb_to_tsvector, ”string” values 34 GB 90 %

GIN index - tsvector_ops - just commit messages 0.5 GB 1.5 %

GIN index - gin_trgm_ops - just commit messages 1 GB 3 %

BTREE_GIN index - ’payload’ jsonb_ops + created_at 23 GB 60 %

BTREE_GIN index - ’payload’ jsonb_path_ops + created_at 15 GB 40 %

BTREE index just on ”created_at” timestamp 120 MB 0.2 %

39 © 2024 Netapp, Inc. Alle Rechte vorbehalten.

D
ra
ft

TOAST tables

40 © 2024 Netapp, Inc. Alle Rechte vorbehalten.

D
ra
ft

TOAST tables

• JSONB and TOAST - lz4 is the best option.

• Even under extreme load lz4 is faster than no compression.

• Old pglz can be very serious bottleneck under higher load.

• The old compression method, pglz, was already slower than no compression with 8 sessions on 8 cores.

• With 16, 32, and 64 sessions on 8 cores, pglz became a serious performance bottleneck.

• No advantage found for external storage without compression.

• On cloud small disk with low IOPs / throughput absolutely kills performance.

41 © 2024 Netapp, Inc. Alle Rechte vorbehalten.

D
ra
ft

TOAST tables

• Compressed data are divided into chunks, max 2000 bytes each

• Each JSONB record has 1 or more chunks of 2000 byte size + 1 smaller chunk for the rest

• Data page of TOAST table is also 8KB size, i.e. stores usually from 4 to 8 chunks

42 © 2024 Netapp, Inc. Alle Rechte vorbehalten.

D
ra
ft

JSON decomposition

43 © 2024 Netapp, Inc. Alle Rechte vorbehalten.

D
ra
ft

JSON object decomposition

• Decomposition into separate columns is only usable for simple JSON data.

• Complex JSON can contain hundreds of different keys / jsonpaths.

• Embedded arrays would require separate tables.

• A table with hundreds of columns is hard to use.

• The theoretical limit is 1600 columns in the tuple.

• However, the tuple must fit into one data page (8KB).

• A full jsonpath as a column name can easily exceed 63 characters.

• A table with many columns requires careful design due to data types padding.

• Columns must fit into 8-byte blocks - a 64-bit CPU reads a block of 8 bytes.

44 © 2024 Netapp, Inc. Alle Rechte vorbehalten.

D
ra
ft

JSON object decomposition

• Nested composed data types can make the solution even more complex.

• They use extended storage, i.e. TOAST.

• This way you just convert one binary object into another.

• Queries require encapsulation of top-level keys into parentheses.

• Only after trying it out will you realize how challenging it can be.

• In many cases, a JSONB column is the most practical solution.

• PostgreSQL should focus on improving this area.

45 © 2024 Netapp, Inc. Alle Rechte vorbehalten.

D
ra
ft

Statistics

46 © 2024 Netapp, Inc. Alle Rechte vorbehalten.

D
ra
ft

Summary of results - statistics

• PostgreSQL 15 & 16 only have histogram_bounds for the entire JSONB document.

• Documents over 1kB are discarded.

• The planner seems to be able to deduce statistics for top-level keys.

• If a top-level key is present in the majority of records, the planner uses a sequential scan.

• For other cases, the planner uses a GIN index.

• Experiments with custom statistics so far have not shown any useful results.

47 © 2024 Netapp, Inc. Alle Rechte vorbehalten.

D
ra
ft

Understand your data

• Understand your data!

• The runtime of queries strongly depends on data distribution - sorting in memory vs on disk.

• Perform thorough data analysis before making decisions about indexes.

• The usage of indexes depends on frequency, selectivity, and correlation.

• Indexes are not always the best solution.

• In some use cases, a parallel sequential scan can be better than an index scan.

• If you truly want to understand JSONB, delve into the source code of PostgreSQL.

48 © 2024 Netapp, Inc. Alle Rechte vorbehalten.

D
ra
ft

Disk IOPs matter

49 © 2024 Netapp, Inc. Alle Rechte vorbehalten.

D
ra
ft

Disk intensive operations - throughput matters

• The same problem occurs on ALL clouds; we just tested it on AWS.

• On AWS RDS SSD 300GB with 3,000 IOPS, the throughput of 125 MiBps was a real disaster.

• All disk-intensive operations were 4x to 5x slower than on the local PC.

• With SSD 500GB and 12,000 IOPS, and a throughput of 500 MiBps, we finally achieved reasonable

results.

• Never try to save money on a cloud instance by using a slow, small disk.

• However, auto-scaling of the disk can further slow down your actions by 5x or more.

50 © 2024 Netapp, Inc. Alle Rechte vorbehalten.

D
ra
ft• Thank you for your attention!

• Questions?

• www.netapp.com

• www.instaclustr.com

• www.credativ.de

• www.netapp.com/blog

• www.instaclustr.com/blog

• www.credativ.de/blog

51 © 2024 Netapp, Inc. Alle Rechte vorbehalten.

	Table of contents
	Problems with implementation
	What was tested
	GIN indexes
	BTREE_GIN indexes
	GIST indexes
	BTREE indexes
	Sizes of indexes
	TOAST tables
	JSON decomposition
	Statistics
	Disk IOPs matter
	Thank you

