
Parallel query processing in PostgreSQL

12.2.2009
Daniel Vojtek

2

Content

 Motivation
 Query processing in PostgreSQL
 Introduction to parallelization
 Parallel processing of subquery
 Sorting
 Our approach and work
 Problems with parallelization

3

Motivation

 Databases are larger and larger
 More effective usage of resources
 More and more CPUs on one machine
 Speed up in query execution (linear)
 Scale up (linear)

4

Query processing

 For each session PostgreSQL creates one
backend process

 Processing query then involves:
 Parsing
 Apllying rewrite rules
 Creation of optimized execution plan
 Executing the plan
 Utility Processing (for DDL)

5

Parallelism in DB

 Usage of multiple CPUs to perform parts of a
single task

 Interquery parallelism – parallelism among
queries – already in PostgreSQL

 Intraquery parallelism – operations within query
are executed parallely
 Intraoperation - parallel subqueries
 Interoperation – parallel sort

6

Intraquery - interoperation

 Pipelining – output records of operation A are
consumed by a second operation B, even
before the first operation has produced the
entire set of records
 Saves space by not storing complete intermediate

results.

 Independent – operations do not depend on
each other – multiple joins (4 = 2 + 2)

 Mixed – more practical solution

7

Intraquery – interoperation cont`d

 Planner produces tree of plan Nodes
 No support of parallelism in planner

 Executor decides which branches of plan tree to
execute in separate thread

 Smart planner
 Adds new Parallel Nodes to plan

 Distribute – single input, multiple output
 Gather – multiple output, single input

 Rejects to use parallelization for simple queries
 Optimizes parallelization

8

Intraquery - intraoperation

 Parallel sorting – in memory quicksort
 Divide and conquer strategy – divides list into

two sublists
 Sublists can then be processed by separate

threads
 After sublists are sorted there is no need for

synchronization – sort is finished
 Without preprocessing there is a linear speedup

9

Other tasks

 Parallel plan scoring
 Planner can search more of the plan space
 Search for optimal plan is NPC problem

 Index rebuilding
 When they spawned many levels or have many

deleted leaf rows
 Importing large warehouse tables

 Partitioned tables
 Parallel processing of partitions

10

Our approach

 Implement intraquery parallelization with
threads

 Create global pool of threads for each backend,
so different phases of query processing can
use it

11

Problems

 Technical:
 PostgreSQL code is not thread safe
 Signal handling

 Logical: Structures like Locks are per process
based. Deadlock management. Decision about
parallelism in planner or in executor

 Support of threads differs on OS
 POSIX threads
 WinThreads

12

Competition

 Oracle
 Large support of parallelism
 Parallel hint for queries, parallel index, partitions

 MS SQL
 Index rebuilding, parallel query support for partitions

 DB2
 Parallel query, partitions.

13

Summary

 Speed up and scale up for processor-intensive
queries

 Intraquery paralllelism
 Implemented with threads
 Work in progress

14

Sources

 PostgreSQL source code
 High Performance Parallel Database

Processing and Grid Databases - David Taniar

15

Q&A

