Oracle database logo should be there... but as of this page it can't be: ...Remember that you are generally not able to use Oracle logos unless you are specifically licensed or authorized to use them. ...

Aleš Zelený (zeleny.ales@gmail.com), CSPUG, CC BY-SA
Agenda

• Mind Migration
• Some terminology
• “Architecture”
• Security
• Backup and Recovery
• High Availability / Disaster recovery
• Other unordered stuff to consider
Purpose of these slides

- Understand differences
- Commons in behavior
- Displeasure prevention
- Migration guide
- RDBMS ranking
- Feature matrix
Mind Migration

- PostgreSQL is not an Oracle database
- Oracle and PostgreSQL are both superb databases, their relation is not like Red Hat and CentOS
- Do not expect equivalents for all of the Oracle RDBMS features in PostgreSQL
- Don't hesitate to be impressed by PostgreSQL broad range of data types
- PostgreSQL has extensions
Terminology

- **Architecture/concepts**
 - Cluster
 - Instance
 - Database
 - Tablespace

- **Logical**
 - Role
 - User
 - Schema
 - Tuple

- quick browse through manuals will help and don't take ages
 - Architectural Fundamentals
 - Documentation index

Yes, a cluster can simply mean a grouping of related things, but context is everything.
Shaun M. Thomas

Wiki: A tuple is a finite ordered list of elements
Oracle and DB relation

• From installed software to database (simplified)
 - Instance is software loaded into memory working with **ONE** database (12c PDB changed that rule)

```
Oracle SW installation
ORACLE_HOME
/u01/app/oracle/product/11.2.0.4/db
```

```
Oracle SW installation
ORACLE_HOME
/u01/app/oracle/product/12.1.0.2/db
```

```
Oracle instance
ORACLE_SID
SALES
```

```
Database
SALES
```

```
Oracle instance
ORACLE_SID
EMPLOYEE
```

```
Database
EMPLOYEE
```

```
Oracle instance
ORACLE_SID
DWH
```

```
Database
DWH
```

```
Oracle instance
ORACLE_SID
INWEB
```

```
Database
INWEB
```

PostgreSQL and DB relation

- From installed software to database (simplified)
 - SW installed from RPM/APT/compiled from source

```
PostgreSQL installation 9.4
POSTGRESQL_HOME

PostgreSQL instance
Running postgres process
PGDATA
/var/lib/pqsql/9.4/data

PostgreSQL installation 9.3
POSTGRESQL_HOME
/usr/bin/postgres : /usr/lib64/libpq.so

PostgreSQL instance
Running postgres process
PGDATA
/var/lib/pqsql/9.4/data2
```

Database
- template0
- template1
- postgres

Applications databases
- INWEB
- DWH
- SALES

Internal purpose, meta data catalog
Pg & Oracle – compared

- From installed software to database (simplified)

PostgreSQL installation 9.4
POSTGRESQL_HOME

Oracle SW installation
ORACLE_HOME
/u01/app/oracle/product/12.1.0.2/db

PostgreSQL instance
Running postgres process
PGDATA
/var/lib/pgsql/9.4/data

Oracle instance
ORACLE_SID
DWH

INWEB
DWH
SALES
Database
DWH

Database
INWEB
Oracle – DB physical structure

- **Oracle RAC (Real Application Clusters)**
 - Even with RAC setup, an Oracle instance serves **ONE** database
 - Multitenant pluggable databases in version 12 breaks that rule...

- **Oracle database physical components (files)**

 - Host: first
 - Instance: MYDB1
 - Host: second
 - Instance: MYDB2
 - Host: third
 - Instance: MYDB3
 - Host: ..nth
 - Instance: MYDB<N>

 - Parameter file
 - Password file
 - Data files
 - Control files
 - Redo Log files
 - Database MYDB
 - UNDO TS
 - Archived Logs
Postgres – cluster physical structure

Not means clustering like Oracle RAC

• Postgres uses directory (might be referred by environment variable PGDATA) traditionally called **database cluster** to store all necessary data managed by Postgres instance

 – Which is mandatory parameter for starting Postgres instance
 – Contains configuration files, and in default setup also files for all databases residing within a particular Postgres cluster, see documentation **Database File Layout**

```
-bash-4.3$ ps -fu postgres
UID        PID  PPID  C STIME TTY          TIME CMD
postgres 30007     1  0 19:03 ?        00:00:00 /usr/bin/postgres -D /var/lib/pgsql/data -p 5433

```

base/
- global/
- pg_clog/
- **pg_hba.conf**
- **pg_ident.conf**
- pg_log/
- pg_multixact/
- pg_notify/
- pg_serial/
- pg_snapshots/

pg_stat/
- pg_stat_tmp/
- pg_subtrans/
- pg_tblspc/
- pg_twophase/
- PG_VERSION
- pg_xlog/
- **postgresql.conf**
- postmaster.opts
- postmaster.pid

Configuration files

Databases directory

```
postgres=# select oid, datname from pg_database;
          oid |      datname
---------+-------------------
        1 | template1
   12968 | template0
   12973 |    postgres
(3 rows)
```

```
-bash-4.3$ du -sh base/*
6.4M     base/1
6.4M     base/12968
6.5M     base/12973

```

```
tree base | head -5
  1
  |  12706
  |  12706_fsm
  |  12706_vm

```
Postgres – mapping to Oracle files

- Postgres similar to Oracle might create archive of online logs for PITR and other purposes
 - Instead of “Oracle Archiver” server processes, Postgres used to call any external command responsible for copying inactive online log to some other destination

```
-bash-4.3$ ps -fu postgres
UID   PID  PPID  C STIME TTY          TIME CMD
postgres 30007     1  0 19:03 ?        00:00:00 /usr/bin/postgres -D /var/lib/pgsql/data -p 5433
```

Configuration files

```
database cluster
/var/lib/pgsql/data
```

- **Database cluster**
- **Databases directory**
 - base/
 - global/
 - pg_clog/
 - pg_hba.conf
 - pg_ident.conf
 - pg_log/
 - pg_multixact/
 - pg_notify/
 - pg_serial/
 - pg_snapshots/
 - pg_stat/
 - pg_stat_tmp/
 - pg_subtrans/
 - pg_tblspc/
 - pg_twophase/
 - PG_VERSION
 - pg_xlog/
 - postgresql
 - postmaster.opts
 - postmaster.pid

```
postgres=# select oid, datname from pg_database;
     oid | datname
-------+-----------
        1 | template1
    12968 | template0
    12973 | postgres
(3 rows)
```

- **Parameter file**
- **Online Redo**
- **Parameter file**
- **Password file**
- **Control files**
- **Data files**
- **Archive command ... Archived Logs**
Tablespaces and filesystems

• Tablespaces might reside on different filesystem
 – Outage prevention
 – Data & storage tier life cycle management
 • Online active data on SSD
 • Archive data on rotating disks
 • Tablespace for temporary files – fast might be unprotected storage, no data loss risk

• Wiki page - File System Layouts
Where is UNDO tables?ace?

- Answer: inside the data files
- Is this feature free of charge?
- No, space maintenance (vacuum) is needed to avoid table bloat.

- Postgres manages data consistency using MVCC model (Multiversion Concurrency Control)
 - Transaction isolation for each session
 - Snapshot of data visible to each session based on transaction number
 - Minimize locking contention
 - Readers never blocks writes
 - Serializable snapshot Isolation is available
Online REDO ~ WAL files

- Online REDOlogs are cyclic buffer in Oracle
 - “cleaned up” by archiver process
 - Static amount of redolog Groups each with one or more members within a redolog group
 - Log switch tuning
- WAL – Write Ahead Log files (XLOGs)
 - “cyclic buffer space” with only soft limit in size
 - File reuse – rename already archived file
 - archive_command is used called each time WAL is switched to new file (there is no “archiver” process in postgres)
WAL files

• Place them on separate filesystem
 - Up to 9.4 space requirement for XLOG filesystem
 • \((2 + \text{checkpoint_completion_target}) \times \text{checkpoint_segments} + 1 \) or \(\text{checkpoint_segments} + \text{wal_keep_segments} + 1 \) files. Each segment file is normally 16 MB.
 - Starting with 9.5
 • \text{wal_min_size} (default 80MB ~ 5 xlogs) and \text{wal_max_size} (default 1GB ~ 64 xlogs)
 - Amount of WAL segments between automatic WAL checkpoint (higher values ~ potentially more data for datafiles recovery after server crash)
 - Both configurations are SOFT limit only
Archive_mode and WAL_level

• Archive_mode
 – off, on, always (archive again on streaming replica)

• wal_level
 – minimal
 • Used for crash recovery only ~ Oracle noarchivelog
 – Archive
 • Used for streaming replication ~ Oracle DataGuard
 – hot_standby
 • Used for streaming replication with read only access to replica ~ Oracle Active DataGuard
Memory

Oracle structure:

Parameters relation:

<table>
<thead>
<tr>
<th>Oracle</th>
<th>Postgres</th>
</tr>
</thead>
<tbody>
<tr>
<td>db_cache_size</td>
<td>sharedBuffers</td>
</tr>
<tr>
<td>sort_area_size (pga_aggregate_target)</td>
<td>work_mem, temp_buffers</td>
</tr>
<tr>
<td>log_buffer_size</td>
<td>wal_buffers</td>
</tr>
<tr>
<td></td>
<td>maintenace_work_mem</td>
</tr>
<tr>
<td></td>
<td>effective_cache_size</td>
</tr>
</tbody>
</table>

Postgres structure:

Nice description can be found at link: PostgreSQL 9.0 Architecture

<table>
<thead>
<tr>
<th>SHARED MEMORY</th>
</tr>
</thead>
<tbody>
<tr>
<td>• shared buffers</td>
</tr>
<tr>
<td>• wal buffers</td>
</tr>
<tr>
<td>• CLOG buffers</td>
</tr>
<tr>
<td>• Locks space</td>
</tr>
<tr>
<td>• Other buffers</td>
</tr>
</tbody>
</table>

Per process MEMORY
• Work mem
• Maintenanace work mem
• Temp buffer
• Catalog cache
• Optimizer/executor
• Oracle database structure (simplified)
• PostgreSQL database structure (simplified)

Logical
- DB cluster
- Database
- DB Objects (table, index...)
- 8k pages

Physical
- PGDATA
 - pg_default → PGDATA/base
 - pg_global → PGDATA/global
 - pg_tblspc/

- Data files
 + free space map (_fsm)
 + visibility map (_vm)
 1GB default size limit, subsequent files are created automatically

- Operating system block

File name: pg_class.relfilenode

Cluster wide tables eg. pg_database
Default tablespace

Custom Tablespaces: symlinks to physical directories
• PostgreSQL database structure (simplified)
Architecture - connections

• Oracle
 – Process named **listener** is responsible to handle new connections
 • listener.ora (network restrictions, TCP port)
 • sqlnet.ora (protocol configuration, kerberos...)
 – Dedicated server processes per client
 – Multi-threaded server
 • Always used on Windows

• PostgreSQL
 – Master process **postgres** listens for new connections
 • pg_hba.conf (user/database/network restrictions)
 • postgresql.conf (TCP port, kerberos, RDBMS configuration...)
 – Dedicated server only
 • Shared memory and semaphores are used for inter process synchronization
 – Connection pooling by other products
 • PgBouncer
 • pgpool-II
Architecture notes

• Oracle
 - Decided that RDBMS is right and only place to manage database buffers
 - Promotes its ASM to have a direct control on file management (ASM is kind of LVM dedicated to Oracle)

• PostgreSQL
 - Relies on (believes to) OS file cache management
 - Do not re-implement features already implemented in OS, thus it use file system to store its data files (no RAW device support)
Security observations I

• Oracle has users and roles
 - Users and Roles are defined on DB level (not applies for PDB)
 - Users and Roles are different entities
• Postgres has roles only
 - Some roles might be granted “with login” permission
• Oracle schema consist from a single user objects (schema = user)
 - Schema is not an object, so it can't be granted
• Postgres schema is a grantable name-space object
 - Ownership and usage on schema might be granted to roles
 - Objects owned by different roles (users) might reside within a single schema
 - Public schema might (and should) be dropped
Security observations

SW installation:
/oracle/product/12.1.0.2/db_1
OS access control to files

user1

\[X - \text{Doesn't work} \]

user3

Schema: user3

TableA

TableB

FunctionC

RoleOne

RoleTwo

user2

TableA

TableB

FunctionC

Schema: user2

\[X - \text{Doesn't work} \]
Security observations II

- Oracle tablespace always belongs to a database
 - quotas might be used to limit tablespace usage by users

- Postgres tablespace is defined at cluster level
 - "create" on TS might be granted to a role
 - TS ownership to a role might be defined
 - There are no space usage quotas on tablespace, check FS free space

- Oracle database contains users defined inside DB, there is no database ownership concept
 - Grant scope is always within a database (PDB global users exception exists)

- Postgres database might be owned by a specific role
 - One role might have granted access on objects from multiple databases
 - Role attributes possible in scope of database – alter role XXX search_path = YYY,ZZZ in MY_DATABASE
Security observations III

• Oracle distinguish
 – System privileges (create table..., select any ...)
 – Object privileges (grant select on ...)

• Postgres does not have such strong difference
 – Login permission is cluster wide kind of “system” privilege
 – Mostly all privileges are related to some objects including database object itself
 • Grant connect on database myDB
 • Grant usage on ...
 • Grant create on ...
Security observations IV

- **Oracle Advanced Security**
 - Transparent Data Encryption
 - Kerberos (MS AD integration) is available without Advanced security as of 12.1 release, applies to older releases
 - Many other security features (VPD, RLS...)

- **Postgres**
 - SSO available
 - *Row Security Policies* are available with 9.5 release
 - TDE is not available
 - Encryption is covered by separate module *pgcrypto*
Security observations V

- **Oracle remote access control**
 - IP address level: sqlnet.ora
 - tcp.validnode_checking = yes
 - tcp.invited_nodes = (hostname1, hostname2)
 - tcp.excluded_nodes = (192.168.10.3)
 - username password and create session is evaluated as next step

- **Postgres**
 - `pg_hba.conf` File
 - username/role_membership, database name, source IP address and authentication method is evaluated prior password validation
 - Password is evaluated as next step
Security observations VI

- **Oracle [public] synonyms**
 - Synonyms are used to reference another user (schema) objects
 - Might be defined as public – accessible to all users

- **Postgres**
 - `search_path` session environment is used to define scope of visible objects, used similar to PATH in OS
 - Might be defined at cluster level
 - Users might have specified different search path values in particular databases

```
ALTER ROLE { roleSpecification | ALL } [ IN DATABASE database_name ] SET configuration_parameter { TO | = } { value | DEFAULT }
```
Security features...

- **ALL macro in grant commands**
 - Expands to all at time of execution existing objects satisfying grant scope criteria
 - Grant execute on **ALL functions** in schema my_schema to ...

- **Alter default privileges**
 - Does not affect existing objects, applied to newly created ones
 - Doc: `ALTER DEFAULT PRIVILEGES`
 `ALTER DEFAULT PRIVILEGES`
 `[FOR { ROLE | USER } target_role [, ...]]`
 `[IN SCHEMA schema_name [, ...]]`
 `abbreviated_grant_or_revoke`
Backup … and recovery

• Database [full or partial] dump
 – Oracle exp/imp, expdp/impdp
 – Postgres
 • pg_dump / pg_restore
 – “directory” format supports parallel dumps
 • pg_dumpall (use it for cluster globals only)
 – Load dump by call to psql
 • Thanks to MVCC, there is no “ORA-1555” risk during dump
 – For sure, the backup is consistent even if the database is used during the dump
Binary backups and recovery

- Offline! Works for Oracle, Postgres…
- Online Oracle database backups
 - Manual
 - Alter database (tablespace) begin backup, Copy corresponding datafiles, alter database (tablespace) end backup, store archived redologs needed for recovery
 - Or use Oracle RMAN utility
- Online Postgres cluster backup
 - Backup Control Functions
 - pg_start_backup(), pg_stop_backup(), same as above for Oracle [no TS level available]
 - pg_basebackup
 - Handle calls to backup control functions and might produce copy of postgres cluster or tar archive with the backup. Some features are available like tablespace mapping for convenient backup procedure/higher flexibility
Binary backups and recovery

- **pgBarman**
 - Some features similar to oracle RMAN
 - Recovery window / # of copies
 - Stores archived WALs together with Barman backups
 - Backup reports
 - Does not use “rman catalog”, backed up files with some barman metadata files are enough
 - Single backup might be archived to tape (tape integration is not part of pgBarman) – it disappears from backup reports, once retrieved from tape, pgBarman can use the backup again

- **pgBackRest**
 - More complicated configuration than Barman, incremental backups seems to be implemented slightly better
HA & DR

- OS clusterware (RHEL Pace Maker, PowerHA…)
 - Simply works

- There is no usable technology like Oracle RAC for PostgreSQL server
 - Sharding (Postgres XL) is not about sharing data files between nodes
 - Oracle 12.2 seems to provide some support for sharding
Oracle replication

• Oracle DataGuard
 – Log shipping (log_archive_dest_n) by archiver
 • ARCHIVE_LAG_TARGET
 – Redo transmit by LGWR
 • ASYNC
 • SYNC
 • Delayed recovery - DELAY=minutes attribute of the LOG_ARCHIVE_DEST_n
 – Logical standby
 – Active Data Guard
 – Golden Gate
RDBMS replication

• Postgres
 – Log-Shipping Standby Servers
 • archive_timeout
 – Streaming Replication
 • ASYNC (default)
 • SYNC - Synchronous Replication
 • Standby Server Settings recovery_min_apply_delay available from 9.4
 – Logical Standby
 • Slony, Bucardo, logical decoding framework
 – Hot Standby (read only accessible standby)
 – BDR provides asynchronous multi-master logical replication.
Others... I

- `psql` command line client
 - Comfortable interface, but be aware of default AUTOCOMMIT behavior
- **CZ fast reference** by Pavel Stěhule
- `--data-checksums` initdb option
 - Page check-sums are calculated for all object in all databases in cluster
 - Use `pgbench` to verify performance impact
 - Checksum is calculated on page read
 - Backup operate at file level, checksums are not calculated during backup
• **Oracle dual table**
 - `select function() from dual;`
 - SQL Loader, External tables
 - `db links`

• **PostgreSQL**
 - `select function(); select 5/8;`
 - `copy command (client side, server side), file_fdw for CSV files, format compatible with COPY command required`
 - Foreign Data Wrappers for many kinds of data sources, including Oracle database
Others... III

- **Porting from Oracle PL/SQL**
 - Oracle / Postgres – often similar, not always the same
 - ORA: trunc(date_variable, format)
 - PG: date_trunc('field', source)
- Pipelined functions are not implemented
- Group by can use column alias in PostgreSQL

```sql
open2300db=> select date_trunc('hour', rec_datetime) as record_time,
    round(avg(temp_out), 2) as avg_temp,
    max(wind_speed_max) as max_wind_max
from open2300.weather where
    rec_datetime > now() - interval '3 hour'
group by record_time
order by record_time desc;

<table>
<thead>
<tr>
<th>record_time</th>
<th>avg_temp</th>
<th>max_wind_max</th>
</tr>
</thead>
<tbody>
<tr>
<td>2016-02-15 22:00:00+01</td>
<td>3.04</td>
<td>2.4</td>
</tr>
<tr>
<td>2016-02-15 21:00:00+01</td>
<td>3.23</td>
<td>2.5</td>
</tr>
<tr>
<td>2016-02-15 20:00:00+01</td>
<td>3.66</td>
<td>2.3</td>
</tr>
<tr>
<td>2016-02-15 19:00:00+01</td>
<td>4.11</td>
<td>2.6</td>
</tr>
</tbody>
</table>
```
Postgres partitioning is implemented on top of inheritance feature

- Declarative partitioning like in Oracle is not available
 - Some basic development for 9.6

Constraint on child tables

Trigger on master table

- Static IF... requires trigger compilation if new child partition tables are added
 - Trigger builds dynamic SQL – more overhead

No global indexes on partitioned tables
Others… get table filename

- Bonus link:
 How to find out which PostgreSQL table a file on disk corresponds to

- Q & A /* end of slides */