O puresTorRAGE!

Service Discovery
and
Postgresql HA

Aliaksandr “Sasha” Aliashkevich

Yes No

* Quick Overview of Postgresqgl HA * Postgres
* Intro into Service Discovery * Kubernetes

* Implementation Design

Uncomplicate Data Storage, Forever o

Postgresqgl HA / DBA View

©2023 Pure Storage Uncomplicate Data Storage, Forever

Postgresqgl HA / DBA View

©2023 Pure Storage Uncomplicate Data Storage, Forever

Postgresql HA

©2023 Pure Storage

\

App

Uncomplicate Data Storage, Forever

Postgresql HA

©2023 Pure Storage

\<

App

1. Reconfigure App

Uncomplicate Data Storage, Forever O

Postgresql HA

©2023 Pure Storage

\<

App

1. Reconfigure App

Uncomplicate Data Storage, Forever O

Postgresql HA A

1. Reconfigure App
2. Load Balancer

N =

©2023 Pure Storage Uncomplicate Data Storage, Forever 0

Postgresql HA

©2023 Pure Storage

App

1. Reconfigure App
2. Load Balancer

Uncomplicate Data Storage, Forever 0

Postgresql HA

©2023 Pure Storage

App

J

(&
DNS

X
B

L/

)

HAProxy

1. Reconfigure App

2. Load Balancer

Uncomplicate Data Storage, Forever

o -

Service Discovery

* Design pattern for the microservices architecture
* Mechanism for finding and connecting to the services available on a network

* Allows services to find each other and communicate dynamically,
without hard-coding IP addresses or URLs

- Enables services to fail over to another instance if one instance goes down, improving
reliability and availability of the overall system

* Kubernetes built-in

Uncomplicate Data Storage, Forever 0

Service Discovery / Service Registry

» Central database for service discovery

- Keeps track of available services and their status

« Services register themselves in the registry on startup
+ Clients query the reqistry to find services they need

- Examples: Etcd, Consul, Zookeeper

Uncomplicate Data Storage, Forever 0

Service Discovery / Sidecar Pattern

* Another design pattern for the microservices architecture

* A separate process running alongside the main application to provide some extra
functionality

- Enables adding features and functionality without changing the main application code

- Examples: PGBouncer, Patroni, Prometheus Exporter

Uncomplicate Data Storage, Forever 0

Service Discovery / Consul

« Service registry and service discovery framework
* Developed by HashiCorp and written in Go
- Consul-servers are responsible for voting and storing the data (3-5 nodes is optimal)

* Consul-clients run as a sidecar alongside the main process and responsible for
communication with consul-servers

* Applications communicate only with local consul-clients

» Consul agents have a DNS interface

Uncomplicate Data Storage, Forever 0

Postgresql HA

©2023 Pure Storage

Consul-client

Consul-server

Consul-client

Consul-client

Uncomplicate Data Storage, Forever

o -

Postgresql HA

Consul-client

Consul-server

Consul-client

©2023 Pure Storage Uncomplicate Data Storage, Forever O 16

Postgresql HA / Consul server config

"'node_name'": "consulol",

"'server": true,

"ui_config": {

"enabled" : true

}'

"data_dir": "/consul/data",

"addresses": {

"http" : "0.0.0.0"

}'

"retry_join": [
""consulaol",
"consulo2",
"consula3"

Uncomplicate Data Storage, Forever O

Postgresqgl HA / Consul client config

{
"node_name": "${HOSTNAME}",
"data_dir": "/consul/data",
"retry_join": [
"consulol",
""consuloz2",
“consul@3” This flag provides addresses of
"]' upstream DNS servers used for
recursors": ["127.0.0.11"],
vaddresses": { recursive resolving queries if they are
"dns": "127.0.0.1", not inside the Consul service domain
"http": "127.0.0.1"
¥
Iy

Uncomplicate Data Storage, Forever O

Postgresqgl HA / Patroni config

scope: pglab

consut: Patroni doesn't register services in Consul by default,
url: http://127.0.0.1:8500 but turning it on creates a service with the <scope>

register_service: true name and two tags: "master" and "replica".

Access the master node using
"master.pglab.service.consul”

Uncomplicate Data Storage, Forever

Postgresgl HA / DNS settings

resolv.conf

nameserver 127.0.0.
nameserver 127.0.0.
options ndots:0

1
11

dnsmasq.conf

server=/consul/127.0.0.1#8600

Uncomplicate Data Storage, Forever

o

Postgresql HA / PGBouncer
(R

App

postgres://localhost:6432/

— _J

PGBouncer

Resolve the hostname)
(optional)

postgres://master.pglab.service.consul:6432/

Dnsmasq

Consul-server

Consul-client

©2023 Pure Storage Uncomplicate Data Storage, Forever 0 21

Postgresql HA / PGBouncer

[databases]
postgres = host=master.pglab.service.consul port=5432 dbname=postgres

[pgbouncer]

listen_port = 6432

listen_addr = localhost

auth_type = md5

auth_file = /etc/pgbouncer/userlist.txt
logfile = /var/log/pgbouncer/pgbouncer. log
pidfile = /home/pgbouncer/pgbouncer.pid

admin_users = app_user
pool_mode = session
dns_max_ttl = 0@
server_login_retry = @

Don’t cache DNS records internally

Retry to login immediately after failing connection attempt

©2023 Pure Storage

Uncomplicate Data Storage, Forever

o -

Thank you

Question?

https://github.com/sasha-alias/postgresql-consul-demo

Uncomplicate Data Storage, Forever O

